| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrabv | Unicode version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 |
|
| Ref | Expression |
|---|---|
| cbvrabv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | nfv 1551 |
. 2
| |
| 4 | nfv 1551 |
. 2
| |
| 5 | cbvrabv.1 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2770 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 |
| This theorem is referenced by: pwnss 4204 acexmidlemv 5944 exmidac 7323 genipv 7624 ltexpri 7728 suplocsrlempr 7922 suplocsr 7924 zsupssdc 10383 bitsfzolem 12298 nninfctlemfo 12394 sqne2sq 12532 eulerth 12588 odzval 12597 pcprecl 12645 pcprendvds 12646 pcpremul 12649 pceulem 12650 4sqlem19 12765 |
| Copyright terms: Public domain | W3C validator |