| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvrabv | Unicode version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) | 
| Ref | Expression | 
|---|---|
| cbvrabv.1 | 
 | 
| Ref | Expression | 
|---|---|
| cbvrabv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | 
. 2
 | |
| 2 | nfcv 2339 | 
. 2
 | |
| 3 | nfv 1542 | 
. 2
 | |
| 4 | nfv 1542 | 
. 2
 | |
| 5 | cbvrabv.1 | 
. 2
 | |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2761 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 | 
| This theorem is referenced by: pwnss 4192 acexmidlemv 5920 exmidac 7276 genipv 7576 ltexpri 7680 suplocsrlempr 7874 suplocsr 7876 zsupssdc 10328 bitsfzolem 12118 nninfctlemfo 12207 sqne2sq 12345 eulerth 12401 odzval 12410 pcprecl 12458 pcprendvds 12459 pcpremul 12462 pceulem 12463 4sqlem19 12578 | 
| Copyright terms: Public domain | W3C validator |