Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvrabv | Unicode version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvrabv.1 |
Ref | Expression |
---|---|
cbvrabv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 | |
2 | nfcv 2312 | . 2 | |
3 | nfv 1521 | . 2 | |
4 | nfv 1521 | . 2 | |
5 | cbvrabv.1 | . 2 | |
6 | 1, 2, 3, 4, 5 | cbvrab 2728 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 |
This theorem is referenced by: pwnss 4145 acexmidlemv 5851 exmidac 7186 genipv 7471 ltexpri 7575 suplocsrlempr 7769 suplocsr 7771 zsupssdc 11909 sqne2sq 12131 eulerth 12187 odzval 12195 pcprecl 12243 pcprendvds 12244 pcpremul 12247 pceulem 12248 |
Copyright terms: Public domain | W3C validator |