ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabv Unicode version

Theorem cbvrabv 2762
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvrabv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrabv  |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvrabv
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x A
2 nfcv 2339 . 2  |-  F/_ y A
3 nfv 1542 . 2  |-  F/ y
ph
4 nfv 1542 . 2  |-  F/ x ps
5 cbvrabv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
61, 2, 3, 4, 5cbvrab 2761 1  |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484
This theorem is referenced by:  pwnss  4192  acexmidlemv  5920  exmidac  7276  genipv  7576  ltexpri  7680  suplocsrlempr  7874  suplocsr  7876  zsupssdc  10328  bitsfzolem  12118  nninfctlemfo  12207  sqne2sq  12345  eulerth  12401  odzval  12410  pcprecl  12458  pcprendvds  12459  pcpremul  12462  pceulem  12463  4sqlem19  12578
  Copyright terms: Public domain W3C validator