Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabv Unicode version

Theorem cbvrabv 2690
 Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvrabv.1
Assertion
Ref Expression
cbvrabv
Distinct variable groups:   ,,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvrabv
StepHypRef Expression
1 nfcv 2283 . 2
2 nfcv 2283 . 2
3 nfv 1509 . 2
4 nfv 1509 . 2
5 cbvrabv.1 . 2
61, 2, 3, 4, 5cbvrab 2689 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1332  crab 2422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2123 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1738  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-rab 2427 This theorem is referenced by:  pwnss  4093  acexmidlemv  5784  exmidac  7094  genipv  7370  ltexpri  7474  suplocsrlempr  7668  suplocsr  7670  sqne2sq  11927
 Copyright terms: Public domain W3C validator