| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrabv | Unicode version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 |
|
| Ref | Expression |
|---|---|
| cbvrabv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfcv 2350 |
. 2
| |
| 3 | nfv 1552 |
. 2
| |
| 4 | nfv 1552 |
. 2
| |
| 5 | cbvrabv.1 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2774 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 |
| This theorem is referenced by: pwnss 4219 acexmidlemv 5965 exmidac 7352 genipv 7657 ltexpri 7761 suplocsrlempr 7955 suplocsr 7957 zsupssdc 10418 bitsfzolem 12380 nninfctlemfo 12476 sqne2sq 12614 eulerth 12670 odzval 12679 pcprecl 12727 pcprendvds 12728 pcpremul 12731 pceulem 12732 4sqlem19 12847 lfgredg2dom 15838 |
| Copyright terms: Public domain | W3C validator |