ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabv Unicode version

Theorem cbvrabv 2771
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvrabv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrabv  |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvrabv
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ x A
2 nfcv 2348 . 2  |-  F/_ y A
3 nfv 1551 . 2  |-  F/ y
ph
4 nfv 1551 . 2  |-  F/ x ps
5 cbvrabv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
61, 2, 3, 4, 5cbvrab 2770 1  |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   {crab 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493
This theorem is referenced by:  pwnss  4203  acexmidlemv  5942  exmidac  7321  genipv  7622  ltexpri  7726  suplocsrlempr  7920  suplocsr  7922  zsupssdc  10381  bitsfzolem  12265  nninfctlemfo  12361  sqne2sq  12499  eulerth  12555  odzval  12564  pcprecl  12612  pcprendvds  12613  pcpremul  12616  pceulem  12617  4sqlem19  12732
  Copyright terms: Public domain W3C validator