| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrabv | Unicode version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 |
|
| Ref | Expression |
|---|---|
| cbvrabv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | nfv 1574 |
. 2
| |
| 4 | nfv 1574 |
. 2
| |
| 5 | cbvrabv.1 |
. 2
| |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2797 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 |
| This theorem is referenced by: pwnss 4243 acexmidlemv 5999 exmidac 7391 genipv 7696 ltexpri 7800 suplocsrlempr 7994 suplocsr 7996 zsupssdc 10458 bitsfzolem 12465 nninfctlemfo 12561 sqne2sq 12699 eulerth 12755 odzval 12764 pcprecl 12812 pcprendvds 12813 pcpremul 12816 pceulem 12817 4sqlem19 12932 lfgredg2dom 15930 |
| Copyright terms: Public domain | W3C validator |