ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcpremul Unicode version

Theorem pcpremul 12296
Description: Multiplicative property of the prime count pre-function. Note that the primality of  P is essential for this property;  ( 4  pCnt  2
)  =  0 but  ( 4  pCnt 
( 2  x.  2 ) )  =  1  =/=  2  x.  (
4  pCnt  2 )  =  0. Since this is needed to show uniqueness for the real prime count function (over  QQ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcpremul.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  M } ,  RR ,  <  )
pcpremul.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
pcpremul.3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } ,  RR ,  <  )
Assertion
Ref Expression
pcpremul  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  =  U )
Distinct variable groups:    n, M    n, N    P, n
Allowed substitution hints:    S( n)    T( n)    U( n)

Proof of Theorem pcpremul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3242 . . . . . 6  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  C_  NN0
2 nn0ssz 9274 . . . . . 6  |-  NN0  C_  ZZ
31, 2sstri 3166 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  C_  ZZ
43a1i 9 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) }  C_  ZZ )
5 prmuz2 12134 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
653ad2ant1 1018 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ( ZZ>= ` 
2 ) )
7 zmulcl 9309 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
87ad2ant2r 509 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  ZZ )
983adant1 1015 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  ZZ )
10 simp2l 1023 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  e.  ZZ )
1110zcnd 9379 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  e.  CC )
12 simp3l 1025 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
1312zcnd 9379 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  CC )
14 simp2r 1024 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M  =/=  0 )
15 0zd 9268 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
0  e.  ZZ )
16 zapne 9330 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
1710, 15, 16syl2anc 411 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M #  0  <->  M  =/=  0 ) )
1814, 17mpbird 167 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  M #  0 )
19 simp3r 1026 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  =/=  0 )
20 zapne 9330 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2112, 15, 20syl2anc 411 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N #  0  <->  N  =/=  0 ) )
2219, 21mpbird 167 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N #  0 )
2311, 13, 18, 22mulap0d 8618 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
) #  0 )
24 zapne 9330 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
259, 15, 24syl2anc 411 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
2623, 25mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =/=  0 )
27 eqid 2177 . . . . . 6  |-  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }
2827pclemdc 12291 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } )
296, 9, 26, 28syl12anc 1236 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e.  ZZ DECID  x  e.  { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } )
3027pclemub 12290 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e. 
{ n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } y  <_  x )
316, 9, 26, 30syl12anc 1236 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } y  <_  x )
32 oveq2 5886 . . . . . . 7  |-  ( x  =  ( S  +  T )  ->  ( P ^ x )  =  ( P ^ ( S  +  T )
) )
3332breq1d 4015 . . . . . 6  |-  ( x  =  ( S  +  T )  ->  (
( P ^ x
)  ||  ( M  x.  N )  <->  ( P ^ ( S  +  T ) )  ||  ( M  x.  N
) ) )
34 eqid 2177 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  M }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  M }
35 pcpremul.1 . . . . . . . . . 10  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  M } ,  RR ,  <  )
3634, 35pcprecl 12292 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  M )
)
376, 10, 14, 36syl12anc 1236 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  M )
)
3837simpld 112 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
39 eqid 2177 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
40 pcpremul.2 . . . . . . . . . 10  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
4139, 40pcprecl 12292 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( T  e.  NN0  /\  ( P ^ T
)  ||  N )
)
426, 12, 19, 41syl12anc 1236 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( T  e.  NN0  /\  ( P ^ T
)  ||  N )
)
4342simpld 112 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  T  e.  NN0 )
4438, 43nn0addcld 9236 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  NN0 )
45 prmnn 12113 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
46453ad2ant1 1018 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  NN )
4746, 44nnexpcld 10679 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  NN )
4847nnzd 9377 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  ZZ )
4946, 43nnexpcld 10679 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  NN )
5049nnzd 9377 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  ZZ )
5110, 50zmulcld 9384 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  ( P ^ T ) )  e.  ZZ )
5246nncnd 8936 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  CC )
5352, 43, 38expaddd 10659 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  =  ( ( P ^ S )  x.  ( P ^ T ) ) )
5437simprd 114 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  ||  M )
5546, 38nnexpcld 10679 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  NN )
5655nnzd 9377 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  ZZ )
57 dvdsmulc 11829 . . . . . . . . . 10  |-  ( ( ( P ^ S
)  e.  ZZ  /\  M  e.  ZZ  /\  ( P ^ T )  e.  ZZ )  ->  (
( P ^ S
)  ||  M  ->  ( ( P ^ S
)  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) ) )
5856, 10, 50, 57syl3anc 1238 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  M  ->  ( ( P ^ S )  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) ) )
5954, 58mpd 13 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  x.  ( P ^ T ) ) 
||  ( M  x.  ( P ^ T ) ) )
6053, 59eqbrtrd 4027 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  ( P ^ T
) ) )
6142simprd 114 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  ||  N )
62 dvdscmul 11828 . . . . . . . . 9  |-  ( ( ( P ^ T
)  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( P ^ T
)  ||  N  ->  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) ) )
6350, 12, 10, 62syl3anc 1238 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ T )  ||  N  ->  ( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) ) )
6461, 63mpd 13 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  ( P ^ T ) ) 
||  ( M  x.  N ) )
6548, 51, 9, 60, 64dvdstrd 11840 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  ||  ( M  x.  N ) )
6633, 44, 65elrabd 2897 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  { x  e.  NN0  |  ( P ^ x )  ||  ( M  x.  N
) } )
67 oveq2 5886 . . . . . . 7  |-  ( x  =  n  ->  ( P ^ x )  =  ( P ^ n
) )
6867breq1d 4015 . . . . . 6  |-  ( x  =  n  ->  (
( P ^ x
)  ||  ( M  x.  N )  <->  ( P ^ n )  ||  ( M  x.  N
) ) )
6968cbvrabv 2738 . . . . 5  |-  { x  e.  NN0  |  ( P ^ x )  ||  ( M  x.  N
) }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  ( M  x.  N ) }
7066, 69eleqtrdi 2270 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } )
714, 29, 31, 70suprzubdc 11956 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  <_  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  ( M  x.  N ) } ,  RR ,  <  ) )
72 pcpremul.3 . . 3  |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N
) } ,  RR ,  <  )
7371, 72breqtrrdi 4047 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  <_  U )
7434, 35pcprendvds2 12294 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  ->  -.  P  ||  ( M  /  ( P ^ S ) ) )
756, 10, 14, 74syl12anc 1236 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( M  /  ( P ^ S ) ) )
7639, 40pcprendvds2 12294 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ T ) ) )
776, 12, 19, 76syl12anc 1236 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ T ) ) )
78 ioran 752 . . . . 5  |-  ( -.  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) )  <-> 
( -.  P  ||  ( M  /  ( P ^ S ) )  /\  -.  P  ||  ( N  /  ( P ^ T ) ) ) )
7975, 77, 78sylanbrc 417 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) )
80 simp1 997 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  Prime )
8155nnne0d 8967 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  =/=  0 )
82 dvdsval2 11800 . . . . . . 7  |-  ( ( ( P ^ S
)  e.  ZZ  /\  ( P ^ S )  =/=  0  /\  M  e.  ZZ )  ->  (
( P ^ S
)  ||  M  <->  ( M  /  ( P ^ S ) )  e.  ZZ ) )
8356, 81, 10, 82syl3anc 1238 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  M  <->  ( M  /  ( P ^ S ) )  e.  ZZ ) )
8454, 83mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  /  ( P ^ S ) )  e.  ZZ )
8549nnne0d 8967 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  =/=  0 )
86 dvdsval2 11800 . . . . . . 7  |-  ( ( ( P ^ T
)  e.  ZZ  /\  ( P ^ T )  =/=  0  /\  N  e.  ZZ )  ->  (
( P ^ T
)  ||  N  <->  ( N  /  ( P ^ T ) )  e.  ZZ ) )
8750, 85, 12, 86syl3anc 1238 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ T )  ||  N  <->  ( N  /  ( P ^ T ) )  e.  ZZ ) )
8861, 87mpbid 147 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N  /  ( P ^ T ) )  e.  ZZ )
89 euclemma 12149 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  /  ( P ^ S ) )  e.  ZZ  /\  ( N  /  ( P ^ T ) )  e.  ZZ )  ->  ( P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) )  <->  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) ) )
9080, 84, 88, 89syl3anc 1238 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  ||  (
( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) )  <->  ( P  ||  ( M  /  ( P ^ S ) )  \/  P  ||  ( N  /  ( P ^ T ) ) ) ) )
9179, 90mtbird 673 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )
9227, 72pcprecl 12292 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 ) )  ->  ( U  e.  NN0  /\  ( P ^ U )  ||  ( M  x.  N
) ) )
936, 9, 26, 92syl12anc 1236 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  NN0  /\  ( P ^ U
)  ||  ( M  x.  N ) ) )
9493simpld 112 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  NN0 )
95 nn0ltp1le 9318 . . . . 5  |-  ( ( ( S  +  T
)  e.  NN0  /\  U  e.  NN0 )  -> 
( ( S  +  T )  <  U  <->  ( ( S  +  T
)  +  1 )  <_  U ) )
9644, 94, 95syl2anc 411 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  <  U  <->  ( ( S  +  T
)  +  1 )  <_  U ) )
9746nnzd 9377 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ZZ )
98 peano2nn0 9219 . . . . . . . 8  |-  ( ( S  +  T )  e.  NN0  ->  ( ( S  +  T )  +  1 )  e. 
NN0 )
9944, 98syl 14 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  +  1 )  e.  NN0 )
100 dvdsexp 11870 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( S  +  T )  +  1 )  e.  NN0  /\  U  e.  ( ZZ>= `  ( ( S  +  T )  +  1 ) ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) )
1011003expia 1205 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( S  +  T )  +  1 )  e.  NN0 )  ->  ( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) ) )
10297, 99, 101syl2anc 411 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( P ^ U ) ) )
10393simprd 114 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  ||  ( M  x.  N ) )
10446, 99nnexpcld 10679 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  e.  NN )
105104nnzd 9377 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  e.  ZZ )
10646, 94nnexpcld 10679 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  e.  NN )
107106nnzd 9377 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ U
)  e.  ZZ )
108 dvdstr 11838 . . . . . . . 8  |-  ( ( ( P ^ (
( S  +  T
)  +  1 ) )  e.  ZZ  /\  ( P ^ U )  e.  ZZ  /\  ( M  x.  N )  e.  ZZ )  ->  (
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  /\  ( P ^ U ) 
||  ( M  x.  N ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
109105, 107, 9, 108syl3anc 1238 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  /\  ( P ^ U )  ||  ( M  x.  N )
)  ->  ( P ^ ( ( S  +  T )  +  1 ) )  ||  ( M  x.  N
) ) )
110103, 109mpan2d 428 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( P ^ U )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
111102, 110syld 45 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  ||  ( M  x.  N ) ) )
11299nn0zd 9376 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  +  1 )  e.  ZZ )
11394nn0zd 9376 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  ZZ )
114 eluz 9544 . . . . . 6  |-  ( ( ( ( S  +  T )  +  1 )  e.  ZZ  /\  U  e.  ZZ )  ->  ( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  <->  ( ( S  +  T )  +  1 )  <_  U ) )
115112, 113, 114syl2anc 411 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( U  e.  (
ZZ>= `  ( ( S  +  T )  +  1 ) )  <->  ( ( S  +  T )  +  1 )  <_  U ) )
11652, 44expp1d 10658 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ (
( S  +  T
)  +  1 ) )  =  ( ( P ^ ( S  +  T ) )  x.  P ) )
11711, 13mulcld 7981 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  e.  CC )
11847nncnd 8936 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  e.  CC )
11947nnap0d 8968 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
) #  0 )
120117, 118, 119divcanap2d 8752 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  T
) )  x.  (
( M  x.  N
)  /  ( P ^ ( S  +  T ) ) ) )  =  ( M  x.  N ) )
12153oveq2d 5894 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N )  /  ( P ^ ( S  +  T ) ) )  =  ( ( M  x.  N )  / 
( ( P ^ S )  x.  ( P ^ T ) ) ) )
12255nncnd 8936 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  CC )
12349nncnd 8936 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
)  e.  CC )
12455nnap0d 8968 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
) #  0 )
12549nnap0d 8968 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ T
) #  0 )
12611, 122, 13, 123, 124, 125divmuldivapd 8792 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  =  ( ( M  x.  N )  / 
( ( P ^ S )  x.  ( P ^ T ) ) ) )
127121, 126eqtr4d 2213 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  x.  N )  /  ( P ^ ( S  +  T ) ) )  =  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) )
128127oveq2d 5894 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( S  +  T
) )  x.  (
( M  x.  N
)  /  ( P ^ ( S  +  T ) ) ) )  =  ( ( P ^ ( S  +  T ) )  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
129120, 128eqtr3d 2212 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( M  x.  N
)  =  ( ( P ^ ( S  +  T ) )  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
130116, 129breq12d 4018 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( M  x.  N )  <->  ( ( P ^ ( S  +  T )
)  x.  P ) 
||  ( ( P ^ ( S  +  T ) )  x.  ( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) ) ) ) )
13184, 88zmulcld 9384 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  e.  ZZ )
13247nnne0d 8967 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  T )
)  =/=  0 )
133 dvdscmulr 11830 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( M  / 
( P ^ S
) )  x.  ( N  /  ( P ^ T ) ) )  e.  ZZ  /\  (
( P ^ ( S  +  T )
)  e.  ZZ  /\  ( P ^ ( S  +  T ) )  =/=  0 ) )  ->  ( ( ( P ^ ( S  +  T ) )  x.  P )  ||  ( ( P ^
( S  +  T
) )  x.  (
( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )  <-> 
P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
13497, 131, 48, 132, 133syl112anc 1242 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ ( S  +  T ) )  x.  P )  ||  (
( P ^ ( S  +  T )
)  x.  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) )  <-> 
P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
135130, 134bitrd 188 . . . . 5  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^
( ( S  +  T )  +  1 ) )  ||  ( M  x.  N )  <->  P 
||  ( ( M  /  ( P ^ S ) )  x.  ( N  /  ( P ^ T ) ) ) ) )
136111, 115, 1353imtr3d 202 . . . 4  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( S  +  T )  +  1 )  <_  U  ->  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) ) )
13796, 136sylbid 150 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  <  U  ->  P  ||  ( ( M  /  ( P ^ S ) )  x.  ( N  / 
( P ^ T
) ) ) ) )
13891, 137mtod 663 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( S  +  T
)  <  U )
13944nn0red 9233 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  e.  RR )
14094nn0red 9233 . . 3  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  U  e.  RR )
141139, 140eqleltd 8077 . 2  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( S  +  T )  =  U  <-> 
( ( S  +  T )  <_  U  /\  -.  ( S  +  T )  <  U
) ) )
14273, 138, 141mpbir2and 944 1  |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  +  T
)  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3131   class class class wbr 4005   ` cfv 5218  (class class class)co 5878   supcsup 6984   RRcr 7813   0cc0 7814   1c1 7815    + caddc 7817    x. cmul 7819    < clt 7995    <_ cle 7996   # cap 8541    / cdiv 8632   NNcn 8922   2c2 8973   NN0cn0 9179   ZZcz 9256   ZZ>=cuz 9531   ^cexp 10522    || cdvds 11797   Primecprime 12110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-1o 6420  df-2o 6421  df-er 6538  df-en 6744  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-fz 10012  df-fzo 10146  df-fl 10273  df-mod 10326  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-dvds 11798  df-gcd 11947  df-prm 12111
This theorem is referenced by:  pceulem  12297  pcmul  12304
  Copyright terms: Public domain W3C validator