| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pcpremul | Unicode version | ||
| Description: Multiplicative property
of the prime count pre-function.  Note that the
       primality of  | 
| Ref | Expression | 
|---|---|
| pcpremul.1 | 
 | 
| pcpremul.2 | 
 | 
| pcpremul.3 | 
 | 
| Ref | Expression | 
|---|---|
| pcpremul | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 3268 | 
. . . . . 6
 | |
| 2 | nn0ssz 9344 | 
. . . . . 6
 | |
| 3 | 1, 2 | sstri 3192 | 
. . . . 5
 | 
| 4 | 3 | a1i 9 | 
. . . 4
 | 
| 5 | prmuz2 12299 | 
. . . . . 6
 | |
| 6 | 5 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 7 | zmulcl 9379 | 
. . . . . . 7
 | |
| 8 | 7 | ad2ant2r 509 | 
. . . . . 6
 | 
| 9 | 8 | 3adant1 1017 | 
. . . . 5
 | 
| 10 | simp2l 1025 | 
. . . . . . . 8
 | |
| 11 | 10 | zcnd 9449 | 
. . . . . . 7
 | 
| 12 | simp3l 1027 | 
. . . . . . . 8
 | |
| 13 | 12 | zcnd 9449 | 
. . . . . . 7
 | 
| 14 | simp2r 1026 | 
. . . . . . . 8
 | |
| 15 | 0zd 9338 | 
. . . . . . . . 9
 | |
| 16 | zapne 9400 | 
. . . . . . . . 9
 | |
| 17 | 10, 15, 16 | syl2anc 411 | 
. . . . . . . 8
 | 
| 18 | 14, 17 | mpbird 167 | 
. . . . . . 7
 | 
| 19 | simp3r 1028 | 
. . . . . . . 8
 | |
| 20 | zapne 9400 | 
. . . . . . . . 9
 | |
| 21 | 12, 15, 20 | syl2anc 411 | 
. . . . . . . 8
 | 
| 22 | 19, 21 | mpbird 167 | 
. . . . . . 7
 | 
| 23 | 11, 13, 18, 22 | mulap0d 8685 | 
. . . . . 6
 | 
| 24 | zapne 9400 | 
. . . . . . 7
 | |
| 25 | 9, 15, 24 | syl2anc 411 | 
. . . . . 6
 | 
| 26 | 23, 25 | mpbid 147 | 
. . . . 5
 | 
| 27 | eqid 2196 | 
. . . . . 6
 | |
| 28 | 27 | pclemdc 12457 | 
. . . . 5
 | 
| 29 | 6, 9, 26, 28 | syl12anc 1247 | 
. . . 4
 | 
| 30 | 27 | pclemub 12456 | 
. . . . 5
 | 
| 31 | 6, 9, 26, 30 | syl12anc 1247 | 
. . . 4
 | 
| 32 | oveq2 5930 | 
. . . . . . 7
 | |
| 33 | 32 | breq1d 4043 | 
. . . . . 6
 | 
| 34 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 35 | pcpremul.1 | 
. . . . . . . . . 10
 | |
| 36 | 34, 35 | pcprecl 12458 | 
. . . . . . . . 9
 | 
| 37 | 6, 10, 14, 36 | syl12anc 1247 | 
. . . . . . . 8
 | 
| 38 | 37 | simpld 112 | 
. . . . . . 7
 | 
| 39 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 40 | pcpremul.2 | 
. . . . . . . . . 10
 | |
| 41 | 39, 40 | pcprecl 12458 | 
. . . . . . . . 9
 | 
| 42 | 6, 12, 19, 41 | syl12anc 1247 | 
. . . . . . . 8
 | 
| 43 | 42 | simpld 112 | 
. . . . . . 7
 | 
| 44 | 38, 43 | nn0addcld 9306 | 
. . . . . 6
 | 
| 45 | prmnn 12278 | 
. . . . . . . . . 10
 | |
| 46 | 45 | 3ad2ant1 1020 | 
. . . . . . . . 9
 | 
| 47 | 46, 44 | nnexpcld 10787 | 
. . . . . . . 8
 | 
| 48 | 47 | nnzd 9447 | 
. . . . . . 7
 | 
| 49 | 46, 43 | nnexpcld 10787 | 
. . . . . . . . 9
 | 
| 50 | 49 | nnzd 9447 | 
. . . . . . . 8
 | 
| 51 | 10, 50 | zmulcld 9454 | 
. . . . . . 7
 | 
| 52 | 46 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 53 | 52, 43, 38 | expaddd 10767 | 
. . . . . . . 8
 | 
| 54 | 37 | simprd 114 | 
. . . . . . . . 9
 | 
| 55 | 46, 38 | nnexpcld 10787 | 
. . . . . . . . . . 11
 | 
| 56 | 55 | nnzd 9447 | 
. . . . . . . . . 10
 | 
| 57 | dvdsmulc 11984 | 
. . . . . . . . . 10
 | |
| 58 | 56, 10, 50, 57 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 59 | 54, 58 | mpd 13 | 
. . . . . . . 8
 | 
| 60 | 53, 59 | eqbrtrd 4055 | 
. . . . . . 7
 | 
| 61 | 42 | simprd 114 | 
. . . . . . . 8
 | 
| 62 | dvdscmul 11983 | 
. . . . . . . . 9
 | |
| 63 | 50, 12, 10, 62 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 64 | 61, 63 | mpd 13 | 
. . . . . . 7
 | 
| 65 | 48, 51, 9, 60, 64 | dvdstrd 11995 | 
. . . . . 6
 | 
| 66 | 33, 44, 65 | elrabd 2922 | 
. . . . 5
 | 
| 67 | oveq2 5930 | 
. . . . . . 7
 | |
| 68 | 67 | breq1d 4043 | 
. . . . . 6
 | 
| 69 | 68 | cbvrabv 2762 | 
. . . . 5
 | 
| 70 | 66, 69 | eleqtrdi 2289 | 
. . . 4
 | 
| 71 | 4, 29, 31, 70 | suprzubdc 10326 | 
. . 3
 | 
| 72 | pcpremul.3 | 
. . 3
 | |
| 73 | 71, 72 | breqtrrdi 4075 | 
. 2
 | 
| 74 | 34, 35 | pcprendvds2 12460 | 
. . . . . 6
 | 
| 75 | 6, 10, 14, 74 | syl12anc 1247 | 
. . . . 5
 | 
| 76 | 39, 40 | pcprendvds2 12460 | 
. . . . . 6
 | 
| 77 | 6, 12, 19, 76 | syl12anc 1247 | 
. . . . 5
 | 
| 78 | ioran 753 | 
. . . . 5
 | |
| 79 | 75, 77, 78 | sylanbrc 417 | 
. . . 4
 | 
| 80 | simp1 999 | 
. . . . 5
 | |
| 81 | 55 | nnne0d 9035 | 
. . . . . . 7
 | 
| 82 | dvdsval2 11955 | 
. . . . . . 7
 | |
| 83 | 56, 81, 10, 82 | syl3anc 1249 | 
. . . . . 6
 | 
| 84 | 54, 83 | mpbid 147 | 
. . . . 5
 | 
| 85 | 49 | nnne0d 9035 | 
. . . . . . 7
 | 
| 86 | dvdsval2 11955 | 
. . . . . . 7
 | |
| 87 | 50, 85, 12, 86 | syl3anc 1249 | 
. . . . . 6
 | 
| 88 | 61, 87 | mpbid 147 | 
. . . . 5
 | 
| 89 | euclemma 12314 | 
. . . . 5
 | |
| 90 | 80, 84, 88, 89 | syl3anc 1249 | 
. . . 4
 | 
| 91 | 79, 90 | mtbird 674 | 
. . 3
 | 
| 92 | 27, 72 | pcprecl 12458 | 
. . . . . . 7
 | 
| 93 | 6, 9, 26, 92 | syl12anc 1247 | 
. . . . . 6
 | 
| 94 | 93 | simpld 112 | 
. . . . 5
 | 
| 95 | nn0ltp1le 9388 | 
. . . . 5
 | |
| 96 | 44, 94, 95 | syl2anc 411 | 
. . . 4
 | 
| 97 | 46 | nnzd 9447 | 
. . . . . . 7
 | 
| 98 | peano2nn0 9289 | 
. . . . . . . 8
 | |
| 99 | 44, 98 | syl 14 | 
. . . . . . 7
 | 
| 100 | dvdsexp 12026 | 
. . . . . . . 8
 | |
| 101 | 100 | 3expia 1207 | 
. . . . . . 7
 | 
| 102 | 97, 99, 101 | syl2anc 411 | 
. . . . . 6
 | 
| 103 | 93 | simprd 114 | 
. . . . . . 7
 | 
| 104 | 46, 99 | nnexpcld 10787 | 
. . . . . . . . 9
 | 
| 105 | 104 | nnzd 9447 | 
. . . . . . . 8
 | 
| 106 | 46, 94 | nnexpcld 10787 | 
. . . . . . . . 9
 | 
| 107 | 106 | nnzd 9447 | 
. . . . . . . 8
 | 
| 108 | dvdstr 11993 | 
. . . . . . . 8
 | |
| 109 | 105, 107, 9, 108 | syl3anc 1249 | 
. . . . . . 7
 | 
| 110 | 103, 109 | mpan2d 428 | 
. . . . . 6
 | 
| 111 | 102, 110 | syld 45 | 
. . . . 5
 | 
| 112 | 99 | nn0zd 9446 | 
. . . . . 6
 | 
| 113 | 94 | nn0zd 9446 | 
. . . . . 6
 | 
| 114 | eluz 9614 | 
. . . . . 6
 | |
| 115 | 112, 113, 114 | syl2anc 411 | 
. . . . 5
 | 
| 116 | 52, 44 | expp1d 10766 | 
. . . . . . 7
 | 
| 117 | 11, 13 | mulcld 8047 | 
. . . . . . . . 9
 | 
| 118 | 47 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 119 | 47 | nnap0d 9036 | 
. . . . . . . . 9
 | 
| 120 | 117, 118, 119 | divcanap2d 8819 | 
. . . . . . . 8
 | 
| 121 | 53 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 122 | 55 | nncnd 9004 | 
. . . . . . . . . . 11
 | 
| 123 | 49 | nncnd 9004 | 
. . . . . . . . . . 11
 | 
| 124 | 55 | nnap0d 9036 | 
. . . . . . . . . . 11
 | 
| 125 | 49 | nnap0d 9036 | 
. . . . . . . . . . 11
 | 
| 126 | 11, 122, 13, 123, 124, 125 | divmuldivapd 8859 | 
. . . . . . . . . 10
 | 
| 127 | 121, 126 | eqtr4d 2232 | 
. . . . . . . . 9
 | 
| 128 | 127 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 129 | 120, 128 | eqtr3d 2231 | 
. . . . . . 7
 | 
| 130 | 116, 129 | breq12d 4046 | 
. . . . . 6
 | 
| 131 | 84, 88 | zmulcld 9454 | 
. . . . . . 7
 | 
| 132 | 47 | nnne0d 9035 | 
. . . . . . 7
 | 
| 133 | dvdscmulr 11985 | 
. . . . . . 7
 | |
| 134 | 97, 131, 48, 132, 133 | syl112anc 1253 | 
. . . . . 6
 | 
| 135 | 130, 134 | bitrd 188 | 
. . . . 5
 | 
| 136 | 111, 115, 135 | 3imtr3d 202 | 
. . . 4
 | 
| 137 | 96, 136 | sylbid 150 | 
. . 3
 | 
| 138 | 91, 137 | mtod 664 | 
. 2
 | 
| 139 | 44 | nn0red 9303 | 
. . 3
 | 
| 140 | 94 | nn0red 9303 | 
. . 3
 | 
| 141 | 139, 140 | eqleltd 8143 | 
. 2
 | 
| 142 | 73, 138, 141 | mpbir2and 946 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 df-prm 12276 | 
| This theorem is referenced by: pceulem 12463 pcmul 12470 | 
| Copyright terms: Public domain | W3C validator |