Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcpremul | Unicode version |
Description: Multiplicative property of the prime count pre-function. Note that the primality of is essential for this property; but . Since this is needed to show uniqueness for the real prime count function (over ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pcpremul.1 | |
pcpremul.2 | |
pcpremul.3 |
Ref | Expression |
---|---|
pcpremul |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3226 | . . . . . 6 | |
2 | nn0ssz 9205 | . . . . . 6 | |
3 | 1, 2 | sstri 3150 | . . . . 5 |
4 | 3 | a1i 9 | . . . 4 |
5 | prmuz2 12059 | . . . . . 6 | |
6 | 5 | 3ad2ant1 1008 | . . . . 5 |
7 | zmulcl 9240 | . . . . . . 7 | |
8 | 7 | ad2ant2r 501 | . . . . . 6 |
9 | 8 | 3adant1 1005 | . . . . 5 |
10 | simp2l 1013 | . . . . . . . 8 | |
11 | 10 | zcnd 9310 | . . . . . . 7 |
12 | simp3l 1015 | . . . . . . . 8 | |
13 | 12 | zcnd 9310 | . . . . . . 7 |
14 | simp2r 1014 | . . . . . . . 8 | |
15 | 0zd 9199 | . . . . . . . . 9 | |
16 | zapne 9261 | . . . . . . . . 9 # | |
17 | 10, 15, 16 | syl2anc 409 | . . . . . . . 8 # |
18 | 14, 17 | mpbird 166 | . . . . . . 7 # |
19 | simp3r 1016 | . . . . . . . 8 | |
20 | zapne 9261 | . . . . . . . . 9 # | |
21 | 12, 15, 20 | syl2anc 409 | . . . . . . . 8 # |
22 | 19, 21 | mpbird 166 | . . . . . . 7 # |
23 | 11, 13, 18, 22 | mulap0d 8551 | . . . . . 6 # |
24 | zapne 9261 | . . . . . . 7 # | |
25 | 9, 15, 24 | syl2anc 409 | . . . . . 6 # |
26 | 23, 25 | mpbid 146 | . . . . 5 |
27 | eqid 2165 | . . . . . 6 | |
28 | 27 | pclemdc 12216 | . . . . 5 DECID |
29 | 6, 9, 26, 28 | syl12anc 1226 | . . . 4 DECID |
30 | 27 | pclemub 12215 | . . . . 5 |
31 | 6, 9, 26, 30 | syl12anc 1226 | . . . 4 |
32 | oveq2 5849 | . . . . . . 7 | |
33 | 32 | breq1d 3991 | . . . . . 6 |
34 | eqid 2165 | . . . . . . . . . 10 | |
35 | pcpremul.1 | . . . . . . . . . 10 | |
36 | 34, 35 | pcprecl 12217 | . . . . . . . . 9 |
37 | 6, 10, 14, 36 | syl12anc 1226 | . . . . . . . 8 |
38 | 37 | simpld 111 | . . . . . . 7 |
39 | eqid 2165 | . . . . . . . . . 10 | |
40 | pcpremul.2 | . . . . . . . . . 10 | |
41 | 39, 40 | pcprecl 12217 | . . . . . . . . 9 |
42 | 6, 12, 19, 41 | syl12anc 1226 | . . . . . . . 8 |
43 | 42 | simpld 111 | . . . . . . 7 |
44 | 38, 43 | nn0addcld 9167 | . . . . . 6 |
45 | prmnn 12038 | . . . . . . . . . 10 | |
46 | 45 | 3ad2ant1 1008 | . . . . . . . . 9 |
47 | 46, 44 | nnexpcld 10606 | . . . . . . . 8 |
48 | 47 | nnzd 9308 | . . . . . . 7 |
49 | 46, 43 | nnexpcld 10606 | . . . . . . . . 9 |
50 | 49 | nnzd 9308 | . . . . . . . 8 |
51 | 10, 50 | zmulcld 9315 | . . . . . . 7 |
52 | 46 | nncnd 8867 | . . . . . . . . 9 |
53 | 52, 43, 38 | expaddd 10586 | . . . . . . . 8 |
54 | 37 | simprd 113 | . . . . . . . . 9 |
55 | 46, 38 | nnexpcld 10606 | . . . . . . . . . . 11 |
56 | 55 | nnzd 9308 | . . . . . . . . . 10 |
57 | dvdsmulc 11755 | . . . . . . . . . 10 | |
58 | 56, 10, 50, 57 | syl3anc 1228 | . . . . . . . . 9 |
59 | 54, 58 | mpd 13 | . . . . . . . 8 |
60 | 53, 59 | eqbrtrd 4003 | . . . . . . 7 |
61 | 42 | simprd 113 | . . . . . . . 8 |
62 | dvdscmul 11754 | . . . . . . . . 9 | |
63 | 50, 12, 10, 62 | syl3anc 1228 | . . . . . . . 8 |
64 | 61, 63 | mpd 13 | . . . . . . 7 |
65 | 48, 51, 9, 60, 64 | dvdstrd 11766 | . . . . . 6 |
66 | 33, 44, 65 | elrabd 2883 | . . . . 5 |
67 | oveq2 5849 | . . . . . . 7 | |
68 | 67 | breq1d 3991 | . . . . . 6 |
69 | 68 | cbvrabv 2724 | . . . . 5 |
70 | 66, 69 | eleqtrdi 2258 | . . . 4 |
71 | 4, 29, 31, 70 | suprzubdc 11881 | . . 3 |
72 | pcpremul.3 | . . 3 | |
73 | 71, 72 | breqtrrdi 4023 | . 2 |
74 | 34, 35 | pcprendvds2 12219 | . . . . . 6 |
75 | 6, 10, 14, 74 | syl12anc 1226 | . . . . 5 |
76 | 39, 40 | pcprendvds2 12219 | . . . . . 6 |
77 | 6, 12, 19, 76 | syl12anc 1226 | . . . . 5 |
78 | ioran 742 | . . . . 5 | |
79 | 75, 77, 78 | sylanbrc 414 | . . . 4 |
80 | simp1 987 | . . . . 5 | |
81 | 55 | nnne0d 8898 | . . . . . . 7 |
82 | dvdsval2 11726 | . . . . . . 7 | |
83 | 56, 81, 10, 82 | syl3anc 1228 | . . . . . 6 |
84 | 54, 83 | mpbid 146 | . . . . 5 |
85 | 49 | nnne0d 8898 | . . . . . . 7 |
86 | dvdsval2 11726 | . . . . . . 7 | |
87 | 50, 85, 12, 86 | syl3anc 1228 | . . . . . 6 |
88 | 61, 87 | mpbid 146 | . . . . 5 |
89 | euclemma 12074 | . . . . 5 | |
90 | 80, 84, 88, 89 | syl3anc 1228 | . . . 4 |
91 | 79, 90 | mtbird 663 | . . 3 |
92 | 27, 72 | pcprecl 12217 | . . . . . . 7 |
93 | 6, 9, 26, 92 | syl12anc 1226 | . . . . . 6 |
94 | 93 | simpld 111 | . . . . 5 |
95 | nn0ltp1le 9249 | . . . . 5 | |
96 | 44, 94, 95 | syl2anc 409 | . . . 4 |
97 | 46 | nnzd 9308 | . . . . . . 7 |
98 | peano2nn0 9150 | . . . . . . . 8 | |
99 | 44, 98 | syl 14 | . . . . . . 7 |
100 | dvdsexp 11795 | . . . . . . . 8 | |
101 | 100 | 3expia 1195 | . . . . . . 7 |
102 | 97, 99, 101 | syl2anc 409 | . . . . . 6 |
103 | 93 | simprd 113 | . . . . . . 7 |
104 | 46, 99 | nnexpcld 10606 | . . . . . . . . 9 |
105 | 104 | nnzd 9308 | . . . . . . . 8 |
106 | 46, 94 | nnexpcld 10606 | . . . . . . . . 9 |
107 | 106 | nnzd 9308 | . . . . . . . 8 |
108 | dvdstr 11764 | . . . . . . . 8 | |
109 | 105, 107, 9, 108 | syl3anc 1228 | . . . . . . 7 |
110 | 103, 109 | mpan2d 425 | . . . . . 6 |
111 | 102, 110 | syld 45 | . . . . 5 |
112 | 99 | nn0zd 9307 | . . . . . 6 |
113 | 94 | nn0zd 9307 | . . . . . 6 |
114 | eluz 9475 | . . . . . 6 | |
115 | 112, 113, 114 | syl2anc 409 | . . . . 5 |
116 | 52, 44 | expp1d 10585 | . . . . . . 7 |
117 | 11, 13 | mulcld 7915 | . . . . . . . . 9 |
118 | 47 | nncnd 8867 | . . . . . . . . 9 |
119 | 47 | nnap0d 8899 | . . . . . . . . 9 # |
120 | 117, 118, 119 | divcanap2d 8684 | . . . . . . . 8 |
121 | 53 | oveq2d 5857 | . . . . . . . . . 10 |
122 | 55 | nncnd 8867 | . . . . . . . . . . 11 |
123 | 49 | nncnd 8867 | . . . . . . . . . . 11 |
124 | 55 | nnap0d 8899 | . . . . . . . . . . 11 # |
125 | 49 | nnap0d 8899 | . . . . . . . . . . 11 # |
126 | 11, 122, 13, 123, 124, 125 | divmuldivapd 8724 | . . . . . . . . . 10 |
127 | 121, 126 | eqtr4d 2201 | . . . . . . . . 9 |
128 | 127 | oveq2d 5857 | . . . . . . . 8 |
129 | 120, 128 | eqtr3d 2200 | . . . . . . 7 |
130 | 116, 129 | breq12d 3994 | . . . . . 6 |
131 | 84, 88 | zmulcld 9315 | . . . . . . 7 |
132 | 47 | nnne0d 8898 | . . . . . . 7 |
133 | dvdscmulr 11756 | . . . . . . 7 | |
134 | 97, 131, 48, 132, 133 | syl112anc 1232 | . . . . . 6 |
135 | 130, 134 | bitrd 187 | . . . . 5 |
136 | 111, 115, 135 | 3imtr3d 201 | . . . 4 |
137 | 96, 136 | sylbid 149 | . . 3 |
138 | 91, 137 | mtod 653 | . 2 |
139 | 44 | nn0red 9164 | . . 3 |
140 | 94 | nn0red 9164 | . . 3 |
141 | 139, 140 | eqleltd 8011 | . 2 |
142 | 73, 138, 141 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 w3a 968 wceq 1343 wcel 2136 wne 2335 wral 2443 wrex 2444 crab 2447 wss 3115 class class class wbr 3981 cfv 5187 (class class class)co 5841 csup 6943 cr 7748 cc0 7749 c1 7750 caddc 7752 cmul 7754 clt 7929 cle 7930 # cap 8475 cdiv 8564 cn 8853 c2 8904 cn0 9110 cz 9187 cuz 9462 cexp 10450 cdvds 11723 cprime 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-1o 6380 df-2o 6381 df-er 6497 df-en 6703 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-dvds 11724 df-gcd 11872 df-prm 12036 |
This theorem is referenced by: pceulem 12222 pcmul 12229 |
Copyright terms: Public domain | W3C validator |