| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcpremul | Unicode version | ||
| Description: Multiplicative property
of the prime count pre-function. Note that the
primality of |
| Ref | Expression |
|---|---|
| pcpremul.1 |
|
| pcpremul.2 |
|
| pcpremul.3 |
|
| Ref | Expression |
|---|---|
| pcpremul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3278 |
. . . . . 6
| |
| 2 | nn0ssz 9390 |
. . . . . 6
| |
| 3 | 1, 2 | sstri 3202 |
. . . . 5
|
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | prmuz2 12453 |
. . . . . 6
| |
| 6 | 5 | 3ad2ant1 1021 |
. . . . 5
|
| 7 | zmulcl 9426 |
. . . . . . 7
| |
| 8 | 7 | ad2ant2r 509 |
. . . . . 6
|
| 9 | 8 | 3adant1 1018 |
. . . . 5
|
| 10 | simp2l 1026 |
. . . . . . . 8
| |
| 11 | 10 | zcnd 9496 |
. . . . . . 7
|
| 12 | simp3l 1028 |
. . . . . . . 8
| |
| 13 | 12 | zcnd 9496 |
. . . . . . 7
|
| 14 | simp2r 1027 |
. . . . . . . 8
| |
| 15 | 0zd 9384 |
. . . . . . . . 9
| |
| 16 | zapne 9447 |
. . . . . . . . 9
| |
| 17 | 10, 15, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | 14, 17 | mpbird 167 |
. . . . . . 7
|
| 19 | simp3r 1029 |
. . . . . . . 8
| |
| 20 | zapne 9447 |
. . . . . . . . 9
| |
| 21 | 12, 15, 20 | syl2anc 411 |
. . . . . . . 8
|
| 22 | 19, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | 11, 13, 18, 22 | mulap0d 8731 |
. . . . . 6
|
| 24 | zapne 9447 |
. . . . . . 7
| |
| 25 | 9, 15, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 23, 25 | mpbid 147 |
. . . . 5
|
| 27 | eqid 2205 |
. . . . . 6
| |
| 28 | 27 | pclemdc 12611 |
. . . . 5
|
| 29 | 6, 9, 26, 28 | syl12anc 1248 |
. . . 4
|
| 30 | 27 | pclemub 12610 |
. . . . 5
|
| 31 | 6, 9, 26, 30 | syl12anc 1248 |
. . . 4
|
| 32 | oveq2 5952 |
. . . . . . 7
| |
| 33 | 32 | breq1d 4054 |
. . . . . 6
|
| 34 | eqid 2205 |
. . . . . . . . . 10
| |
| 35 | pcpremul.1 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | pcprecl 12612 |
. . . . . . . . 9
|
| 37 | 6, 10, 14, 36 | syl12anc 1248 |
. . . . . . . 8
|
| 38 | 37 | simpld 112 |
. . . . . . 7
|
| 39 | eqid 2205 |
. . . . . . . . . 10
| |
| 40 | pcpremul.2 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | pcprecl 12612 |
. . . . . . . . 9
|
| 42 | 6, 12, 19, 41 | syl12anc 1248 |
. . . . . . . 8
|
| 43 | 42 | simpld 112 |
. . . . . . 7
|
| 44 | 38, 43 | nn0addcld 9352 |
. . . . . 6
|
| 45 | prmnn 12432 |
. . . . . . . . . 10
| |
| 46 | 45 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 47 | 46, 44 | nnexpcld 10840 |
. . . . . . . 8
|
| 48 | 47 | nnzd 9494 |
. . . . . . 7
|
| 49 | 46, 43 | nnexpcld 10840 |
. . . . . . . . 9
|
| 50 | 49 | nnzd 9494 |
. . . . . . . 8
|
| 51 | 10, 50 | zmulcld 9501 |
. . . . . . 7
|
| 52 | 46 | nncnd 9050 |
. . . . . . . . 9
|
| 53 | 52, 43, 38 | expaddd 10820 |
. . . . . . . 8
|
| 54 | 37 | simprd 114 |
. . . . . . . . 9
|
| 55 | 46, 38 | nnexpcld 10840 |
. . . . . . . . . . 11
|
| 56 | 55 | nnzd 9494 |
. . . . . . . . . 10
|
| 57 | dvdsmulc 12130 |
. . . . . . . . . 10
| |
| 58 | 56, 10, 50, 57 | syl3anc 1250 |
. . . . . . . . 9
|
| 59 | 54, 58 | mpd 13 |
. . . . . . . 8
|
| 60 | 53, 59 | eqbrtrd 4066 |
. . . . . . 7
|
| 61 | 42 | simprd 114 |
. . . . . . . 8
|
| 62 | dvdscmul 12129 |
. . . . . . . . 9
| |
| 63 | 50, 12, 10, 62 | syl3anc 1250 |
. . . . . . . 8
|
| 64 | 61, 63 | mpd 13 |
. . . . . . 7
|
| 65 | 48, 51, 9, 60, 64 | dvdstrd 12141 |
. . . . . 6
|
| 66 | 33, 44, 65 | elrabd 2931 |
. . . . 5
|
| 67 | oveq2 5952 |
. . . . . . 7
| |
| 68 | 67 | breq1d 4054 |
. . . . . 6
|
| 69 | 68 | cbvrabv 2771 |
. . . . 5
|
| 70 | 66, 69 | eleqtrdi 2298 |
. . . 4
|
| 71 | 4, 29, 31, 70 | suprzubdc 10379 |
. . 3
|
| 72 | pcpremul.3 |
. . 3
| |
| 73 | 71, 72 | breqtrrdi 4086 |
. 2
|
| 74 | 34, 35 | pcprendvds2 12614 |
. . . . . 6
|
| 75 | 6, 10, 14, 74 | syl12anc 1248 |
. . . . 5
|
| 76 | 39, 40 | pcprendvds2 12614 |
. . . . . 6
|
| 77 | 6, 12, 19, 76 | syl12anc 1248 |
. . . . 5
|
| 78 | ioran 754 |
. . . . 5
| |
| 79 | 75, 77, 78 | sylanbrc 417 |
. . . 4
|
| 80 | simp1 1000 |
. . . . 5
| |
| 81 | 55 | nnne0d 9081 |
. . . . . . 7
|
| 82 | dvdsval2 12101 |
. . . . . . 7
| |
| 83 | 56, 81, 10, 82 | syl3anc 1250 |
. . . . . 6
|
| 84 | 54, 83 | mpbid 147 |
. . . . 5
|
| 85 | 49 | nnne0d 9081 |
. . . . . . 7
|
| 86 | dvdsval2 12101 |
. . . . . . 7
| |
| 87 | 50, 85, 12, 86 | syl3anc 1250 |
. . . . . 6
|
| 88 | 61, 87 | mpbid 147 |
. . . . 5
|
| 89 | euclemma 12468 |
. . . . 5
| |
| 90 | 80, 84, 88, 89 | syl3anc 1250 |
. . . 4
|
| 91 | 79, 90 | mtbird 675 |
. . 3
|
| 92 | 27, 72 | pcprecl 12612 |
. . . . . . 7
|
| 93 | 6, 9, 26, 92 | syl12anc 1248 |
. . . . . 6
|
| 94 | 93 | simpld 112 |
. . . . 5
|
| 95 | nn0ltp1le 9435 |
. . . . 5
| |
| 96 | 44, 94, 95 | syl2anc 411 |
. . . 4
|
| 97 | 46 | nnzd 9494 |
. . . . . . 7
|
| 98 | peano2nn0 9335 |
. . . . . . . 8
| |
| 99 | 44, 98 | syl 14 |
. . . . . . 7
|
| 100 | dvdsexp 12172 |
. . . . . . . 8
| |
| 101 | 100 | 3expia 1208 |
. . . . . . 7
|
| 102 | 97, 99, 101 | syl2anc 411 |
. . . . . 6
|
| 103 | 93 | simprd 114 |
. . . . . . 7
|
| 104 | 46, 99 | nnexpcld 10840 |
. . . . . . . . 9
|
| 105 | 104 | nnzd 9494 |
. . . . . . . 8
|
| 106 | 46, 94 | nnexpcld 10840 |
. . . . . . . . 9
|
| 107 | 106 | nnzd 9494 |
. . . . . . . 8
|
| 108 | dvdstr 12139 |
. . . . . . . 8
| |
| 109 | 105, 107, 9, 108 | syl3anc 1250 |
. . . . . . 7
|
| 110 | 103, 109 | mpan2d 428 |
. . . . . 6
|
| 111 | 102, 110 | syld 45 |
. . . . 5
|
| 112 | 99 | nn0zd 9493 |
. . . . . 6
|
| 113 | 94 | nn0zd 9493 |
. . . . . 6
|
| 114 | eluz 9661 |
. . . . . 6
| |
| 115 | 112, 113, 114 | syl2anc 411 |
. . . . 5
|
| 116 | 52, 44 | expp1d 10819 |
. . . . . . 7
|
| 117 | 11, 13 | mulcld 8093 |
. . . . . . . . 9
|
| 118 | 47 | nncnd 9050 |
. . . . . . . . 9
|
| 119 | 47 | nnap0d 9082 |
. . . . . . . . 9
|
| 120 | 117, 118, 119 | divcanap2d 8865 |
. . . . . . . 8
|
| 121 | 53 | oveq2d 5960 |
. . . . . . . . . 10
|
| 122 | 55 | nncnd 9050 |
. . . . . . . . . . 11
|
| 123 | 49 | nncnd 9050 |
. . . . . . . . . . 11
|
| 124 | 55 | nnap0d 9082 |
. . . . . . . . . . 11
|
| 125 | 49 | nnap0d 9082 |
. . . . . . . . . . 11
|
| 126 | 11, 122, 13, 123, 124, 125 | divmuldivapd 8905 |
. . . . . . . . . 10
|
| 127 | 121, 126 | eqtr4d 2241 |
. . . . . . . . 9
|
| 128 | 127 | oveq2d 5960 |
. . . . . . . 8
|
| 129 | 120, 128 | eqtr3d 2240 |
. . . . . . 7
|
| 130 | 116, 129 | breq12d 4057 |
. . . . . 6
|
| 131 | 84, 88 | zmulcld 9501 |
. . . . . . 7
|
| 132 | 47 | nnne0d 9081 |
. . . . . . 7
|
| 133 | dvdscmulr 12131 |
. . . . . . 7
| |
| 134 | 97, 131, 48, 132, 133 | syl112anc 1254 |
. . . . . 6
|
| 135 | 130, 134 | bitrd 188 |
. . . . 5
|
| 136 | 111, 115, 135 | 3imtr3d 202 |
. . . 4
|
| 137 | 96, 136 | sylbid 150 |
. . 3
|
| 138 | 91, 137 | mtod 665 |
. 2
|
| 139 | 44 | nn0red 9349 |
. . 3
|
| 140 | 94 | nn0red 9349 |
. . 3
|
| 141 | 139, 140 | eqleltd 8189 |
. 2
|
| 142 | 73, 138, 141 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-2o 6503 df-er 6620 df-en 6828 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 df-prm 12430 |
| This theorem is referenced by: pceulem 12617 pcmul 12624 |
| Copyright terms: Public domain | W3C validator |