| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcpremul | Unicode version | ||
| Description: Multiplicative property
of the prime count pre-function. Note that the
primality of |
| Ref | Expression |
|---|---|
| pcpremul.1 |
|
| pcpremul.2 |
|
| pcpremul.3 |
|
| Ref | Expression |
|---|---|
| pcpremul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3286 |
. . . . . 6
| |
| 2 | nn0ssz 9425 |
. . . . . 6
| |
| 3 | 1, 2 | sstri 3210 |
. . . . 5
|
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | prmuz2 12568 |
. . . . . 6
| |
| 6 | 5 | 3ad2ant1 1021 |
. . . . 5
|
| 7 | zmulcl 9461 |
. . . . . . 7
| |
| 8 | 7 | ad2ant2r 509 |
. . . . . 6
|
| 9 | 8 | 3adant1 1018 |
. . . . 5
|
| 10 | simp2l 1026 |
. . . . . . . 8
| |
| 11 | 10 | zcnd 9531 |
. . . . . . 7
|
| 12 | simp3l 1028 |
. . . . . . . 8
| |
| 13 | 12 | zcnd 9531 |
. . . . . . 7
|
| 14 | simp2r 1027 |
. . . . . . . 8
| |
| 15 | 0zd 9419 |
. . . . . . . . 9
| |
| 16 | zapne 9482 |
. . . . . . . . 9
| |
| 17 | 10, 15, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | 14, 17 | mpbird 167 |
. . . . . . 7
|
| 19 | simp3r 1029 |
. . . . . . . 8
| |
| 20 | zapne 9482 |
. . . . . . . . 9
| |
| 21 | 12, 15, 20 | syl2anc 411 |
. . . . . . . 8
|
| 22 | 19, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | 11, 13, 18, 22 | mulap0d 8766 |
. . . . . 6
|
| 24 | zapne 9482 |
. . . . . . 7
| |
| 25 | 9, 15, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 23, 25 | mpbid 147 |
. . . . 5
|
| 27 | eqid 2207 |
. . . . . 6
| |
| 28 | 27 | pclemdc 12726 |
. . . . 5
|
| 29 | 6, 9, 26, 28 | syl12anc 1248 |
. . . 4
|
| 30 | 27 | pclemub 12725 |
. . . . 5
|
| 31 | 6, 9, 26, 30 | syl12anc 1248 |
. . . 4
|
| 32 | oveq2 5975 |
. . . . . . 7
| |
| 33 | 32 | breq1d 4069 |
. . . . . 6
|
| 34 | eqid 2207 |
. . . . . . . . . 10
| |
| 35 | pcpremul.1 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | pcprecl 12727 |
. . . . . . . . 9
|
| 37 | 6, 10, 14, 36 | syl12anc 1248 |
. . . . . . . 8
|
| 38 | 37 | simpld 112 |
. . . . . . 7
|
| 39 | eqid 2207 |
. . . . . . . . . 10
| |
| 40 | pcpremul.2 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | pcprecl 12727 |
. . . . . . . . 9
|
| 42 | 6, 12, 19, 41 | syl12anc 1248 |
. . . . . . . 8
|
| 43 | 42 | simpld 112 |
. . . . . . 7
|
| 44 | 38, 43 | nn0addcld 9387 |
. . . . . 6
|
| 45 | prmnn 12547 |
. . . . . . . . . 10
| |
| 46 | 45 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 47 | 46, 44 | nnexpcld 10877 |
. . . . . . . 8
|
| 48 | 47 | nnzd 9529 |
. . . . . . 7
|
| 49 | 46, 43 | nnexpcld 10877 |
. . . . . . . . 9
|
| 50 | 49 | nnzd 9529 |
. . . . . . . 8
|
| 51 | 10, 50 | zmulcld 9536 |
. . . . . . 7
|
| 52 | 46 | nncnd 9085 |
. . . . . . . . 9
|
| 53 | 52, 43, 38 | expaddd 10857 |
. . . . . . . 8
|
| 54 | 37 | simprd 114 |
. . . . . . . . 9
|
| 55 | 46, 38 | nnexpcld 10877 |
. . . . . . . . . . 11
|
| 56 | 55 | nnzd 9529 |
. . . . . . . . . 10
|
| 57 | dvdsmulc 12245 |
. . . . . . . . . 10
| |
| 58 | 56, 10, 50, 57 | syl3anc 1250 |
. . . . . . . . 9
|
| 59 | 54, 58 | mpd 13 |
. . . . . . . 8
|
| 60 | 53, 59 | eqbrtrd 4081 |
. . . . . . 7
|
| 61 | 42 | simprd 114 |
. . . . . . . 8
|
| 62 | dvdscmul 12244 |
. . . . . . . . 9
| |
| 63 | 50, 12, 10, 62 | syl3anc 1250 |
. . . . . . . 8
|
| 64 | 61, 63 | mpd 13 |
. . . . . . 7
|
| 65 | 48, 51, 9, 60, 64 | dvdstrd 12256 |
. . . . . 6
|
| 66 | 33, 44, 65 | elrabd 2938 |
. . . . 5
|
| 67 | oveq2 5975 |
. . . . . . 7
| |
| 68 | 67 | breq1d 4069 |
. . . . . 6
|
| 69 | 68 | cbvrabv 2775 |
. . . . 5
|
| 70 | 66, 69 | eleqtrdi 2300 |
. . . 4
|
| 71 | 4, 29, 31, 70 | suprzubdc 10416 |
. . 3
|
| 72 | pcpremul.3 |
. . 3
| |
| 73 | 71, 72 | breqtrrdi 4101 |
. 2
|
| 74 | 34, 35 | pcprendvds2 12729 |
. . . . . 6
|
| 75 | 6, 10, 14, 74 | syl12anc 1248 |
. . . . 5
|
| 76 | 39, 40 | pcprendvds2 12729 |
. . . . . 6
|
| 77 | 6, 12, 19, 76 | syl12anc 1248 |
. . . . 5
|
| 78 | ioran 754 |
. . . . 5
| |
| 79 | 75, 77, 78 | sylanbrc 417 |
. . . 4
|
| 80 | simp1 1000 |
. . . . 5
| |
| 81 | 55 | nnne0d 9116 |
. . . . . . 7
|
| 82 | dvdsval2 12216 |
. . . . . . 7
| |
| 83 | 56, 81, 10, 82 | syl3anc 1250 |
. . . . . 6
|
| 84 | 54, 83 | mpbid 147 |
. . . . 5
|
| 85 | 49 | nnne0d 9116 |
. . . . . . 7
|
| 86 | dvdsval2 12216 |
. . . . . . 7
| |
| 87 | 50, 85, 12, 86 | syl3anc 1250 |
. . . . . 6
|
| 88 | 61, 87 | mpbid 147 |
. . . . 5
|
| 89 | euclemma 12583 |
. . . . 5
| |
| 90 | 80, 84, 88, 89 | syl3anc 1250 |
. . . 4
|
| 91 | 79, 90 | mtbird 675 |
. . 3
|
| 92 | 27, 72 | pcprecl 12727 |
. . . . . . 7
|
| 93 | 6, 9, 26, 92 | syl12anc 1248 |
. . . . . 6
|
| 94 | 93 | simpld 112 |
. . . . 5
|
| 95 | nn0ltp1le 9470 |
. . . . 5
| |
| 96 | 44, 94, 95 | syl2anc 411 |
. . . 4
|
| 97 | 46 | nnzd 9529 |
. . . . . . 7
|
| 98 | peano2nn0 9370 |
. . . . . . . 8
| |
| 99 | 44, 98 | syl 14 |
. . . . . . 7
|
| 100 | dvdsexp 12287 |
. . . . . . . 8
| |
| 101 | 100 | 3expia 1208 |
. . . . . . 7
|
| 102 | 97, 99, 101 | syl2anc 411 |
. . . . . 6
|
| 103 | 93 | simprd 114 |
. . . . . . 7
|
| 104 | 46, 99 | nnexpcld 10877 |
. . . . . . . . 9
|
| 105 | 104 | nnzd 9529 |
. . . . . . . 8
|
| 106 | 46, 94 | nnexpcld 10877 |
. . . . . . . . 9
|
| 107 | 106 | nnzd 9529 |
. . . . . . . 8
|
| 108 | dvdstr 12254 |
. . . . . . . 8
| |
| 109 | 105, 107, 9, 108 | syl3anc 1250 |
. . . . . . 7
|
| 110 | 103, 109 | mpan2d 428 |
. . . . . 6
|
| 111 | 102, 110 | syld 45 |
. . . . 5
|
| 112 | 99 | nn0zd 9528 |
. . . . . 6
|
| 113 | 94 | nn0zd 9528 |
. . . . . 6
|
| 114 | eluz 9696 |
. . . . . 6
| |
| 115 | 112, 113, 114 | syl2anc 411 |
. . . . 5
|
| 116 | 52, 44 | expp1d 10856 |
. . . . . . 7
|
| 117 | 11, 13 | mulcld 8128 |
. . . . . . . . 9
|
| 118 | 47 | nncnd 9085 |
. . . . . . . . 9
|
| 119 | 47 | nnap0d 9117 |
. . . . . . . . 9
|
| 120 | 117, 118, 119 | divcanap2d 8900 |
. . . . . . . 8
|
| 121 | 53 | oveq2d 5983 |
. . . . . . . . . 10
|
| 122 | 55 | nncnd 9085 |
. . . . . . . . . . 11
|
| 123 | 49 | nncnd 9085 |
. . . . . . . . . . 11
|
| 124 | 55 | nnap0d 9117 |
. . . . . . . . . . 11
|
| 125 | 49 | nnap0d 9117 |
. . . . . . . . . . 11
|
| 126 | 11, 122, 13, 123, 124, 125 | divmuldivapd 8940 |
. . . . . . . . . 10
|
| 127 | 121, 126 | eqtr4d 2243 |
. . . . . . . . 9
|
| 128 | 127 | oveq2d 5983 |
. . . . . . . 8
|
| 129 | 120, 128 | eqtr3d 2242 |
. . . . . . 7
|
| 130 | 116, 129 | breq12d 4072 |
. . . . . 6
|
| 131 | 84, 88 | zmulcld 9536 |
. . . . . . 7
|
| 132 | 47 | nnne0d 9116 |
. . . . . . 7
|
| 133 | dvdscmulr 12246 |
. . . . . . 7
| |
| 134 | 97, 131, 48, 132, 133 | syl112anc 1254 |
. . . . . 6
|
| 135 | 130, 134 | bitrd 188 |
. . . . 5
|
| 136 | 111, 115, 135 | 3imtr3d 202 |
. . . 4
|
| 137 | 96, 136 | sylbid 150 |
. . 3
|
| 138 | 91, 137 | mtod 665 |
. 2
|
| 139 | 44 | nn0red 9384 |
. . 3
|
| 140 | 94 | nn0red 9384 |
. . 3
|
| 141 | 139, 140 | eqleltd 8224 |
. 2
|
| 142 | 73, 138, 141 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-prm 12545 |
| This theorem is referenced by: pceulem 12732 pcmul 12739 |
| Copyright terms: Public domain | W3C validator |