| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcpremul | Unicode version | ||
| Description: Multiplicative property
of the prime count pre-function. Note that the
primality of |
| Ref | Expression |
|---|---|
| pcpremul.1 |
|
| pcpremul.2 |
|
| pcpremul.3 |
|
| Ref | Expression |
|---|---|
| pcpremul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3309 |
. . . . . 6
| |
| 2 | nn0ssz 9460 |
. . . . . 6
| |
| 3 | 1, 2 | sstri 3233 |
. . . . 5
|
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | prmuz2 12648 |
. . . . . 6
| |
| 6 | 5 | 3ad2ant1 1042 |
. . . . 5
|
| 7 | zmulcl 9496 |
. . . . . . 7
| |
| 8 | 7 | ad2ant2r 509 |
. . . . . 6
|
| 9 | 8 | 3adant1 1039 |
. . . . 5
|
| 10 | simp2l 1047 |
. . . . . . . 8
| |
| 11 | 10 | zcnd 9566 |
. . . . . . 7
|
| 12 | simp3l 1049 |
. . . . . . . 8
| |
| 13 | 12 | zcnd 9566 |
. . . . . . 7
|
| 14 | simp2r 1048 |
. . . . . . . 8
| |
| 15 | 0zd 9454 |
. . . . . . . . 9
| |
| 16 | zapne 9517 |
. . . . . . . . 9
| |
| 17 | 10, 15, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | 14, 17 | mpbird 167 |
. . . . . . 7
|
| 19 | simp3r 1050 |
. . . . . . . 8
| |
| 20 | zapne 9517 |
. . . . . . . . 9
| |
| 21 | 12, 15, 20 | syl2anc 411 |
. . . . . . . 8
|
| 22 | 19, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | 11, 13, 18, 22 | mulap0d 8801 |
. . . . . 6
|
| 24 | zapne 9517 |
. . . . . . 7
| |
| 25 | 9, 15, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 23, 25 | mpbid 147 |
. . . . 5
|
| 27 | eqid 2229 |
. . . . . 6
| |
| 28 | 27 | pclemdc 12806 |
. . . . 5
|
| 29 | 6, 9, 26, 28 | syl12anc 1269 |
. . . 4
|
| 30 | 27 | pclemub 12805 |
. . . . 5
|
| 31 | 6, 9, 26, 30 | syl12anc 1269 |
. . . 4
|
| 32 | oveq2 6008 |
. . . . . . 7
| |
| 33 | 32 | breq1d 4092 |
. . . . . 6
|
| 34 | eqid 2229 |
. . . . . . . . . 10
| |
| 35 | pcpremul.1 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | pcprecl 12807 |
. . . . . . . . 9
|
| 37 | 6, 10, 14, 36 | syl12anc 1269 |
. . . . . . . 8
|
| 38 | 37 | simpld 112 |
. . . . . . 7
|
| 39 | eqid 2229 |
. . . . . . . . . 10
| |
| 40 | pcpremul.2 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | pcprecl 12807 |
. . . . . . . . 9
|
| 42 | 6, 12, 19, 41 | syl12anc 1269 |
. . . . . . . 8
|
| 43 | 42 | simpld 112 |
. . . . . . 7
|
| 44 | 38, 43 | nn0addcld 9422 |
. . . . . 6
|
| 45 | prmnn 12627 |
. . . . . . . . . 10
| |
| 46 | 45 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 47 | 46, 44 | nnexpcld 10912 |
. . . . . . . 8
|
| 48 | 47 | nnzd 9564 |
. . . . . . 7
|
| 49 | 46, 43 | nnexpcld 10912 |
. . . . . . . . 9
|
| 50 | 49 | nnzd 9564 |
. . . . . . . 8
|
| 51 | 10, 50 | zmulcld 9571 |
. . . . . . 7
|
| 52 | 46 | nncnd 9120 |
. . . . . . . . 9
|
| 53 | 52, 43, 38 | expaddd 10892 |
. . . . . . . 8
|
| 54 | 37 | simprd 114 |
. . . . . . . . 9
|
| 55 | 46, 38 | nnexpcld 10912 |
. . . . . . . . . . 11
|
| 56 | 55 | nnzd 9564 |
. . . . . . . . . 10
|
| 57 | dvdsmulc 12325 |
. . . . . . . . . 10
| |
| 58 | 56, 10, 50, 57 | syl3anc 1271 |
. . . . . . . . 9
|
| 59 | 54, 58 | mpd 13 |
. . . . . . . 8
|
| 60 | 53, 59 | eqbrtrd 4104 |
. . . . . . 7
|
| 61 | 42 | simprd 114 |
. . . . . . . 8
|
| 62 | dvdscmul 12324 |
. . . . . . . . 9
| |
| 63 | 50, 12, 10, 62 | syl3anc 1271 |
. . . . . . . 8
|
| 64 | 61, 63 | mpd 13 |
. . . . . . 7
|
| 65 | 48, 51, 9, 60, 64 | dvdstrd 12336 |
. . . . . 6
|
| 66 | 33, 44, 65 | elrabd 2961 |
. . . . 5
|
| 67 | oveq2 6008 |
. . . . . . 7
| |
| 68 | 67 | breq1d 4092 |
. . . . . 6
|
| 69 | 68 | cbvrabv 2798 |
. . . . 5
|
| 70 | 66, 69 | eleqtrdi 2322 |
. . . 4
|
| 71 | 4, 29, 31, 70 | suprzubdc 10451 |
. . 3
|
| 72 | pcpremul.3 |
. . 3
| |
| 73 | 71, 72 | breqtrrdi 4124 |
. 2
|
| 74 | 34, 35 | pcprendvds2 12809 |
. . . . . 6
|
| 75 | 6, 10, 14, 74 | syl12anc 1269 |
. . . . 5
|
| 76 | 39, 40 | pcprendvds2 12809 |
. . . . . 6
|
| 77 | 6, 12, 19, 76 | syl12anc 1269 |
. . . . 5
|
| 78 | ioran 757 |
. . . . 5
| |
| 79 | 75, 77, 78 | sylanbrc 417 |
. . . 4
|
| 80 | simp1 1021 |
. . . . 5
| |
| 81 | 55 | nnne0d 9151 |
. . . . . . 7
|
| 82 | dvdsval2 12296 |
. . . . . . 7
| |
| 83 | 56, 81, 10, 82 | syl3anc 1271 |
. . . . . 6
|
| 84 | 54, 83 | mpbid 147 |
. . . . 5
|
| 85 | 49 | nnne0d 9151 |
. . . . . . 7
|
| 86 | dvdsval2 12296 |
. . . . . . 7
| |
| 87 | 50, 85, 12, 86 | syl3anc 1271 |
. . . . . 6
|
| 88 | 61, 87 | mpbid 147 |
. . . . 5
|
| 89 | euclemma 12663 |
. . . . 5
| |
| 90 | 80, 84, 88, 89 | syl3anc 1271 |
. . . 4
|
| 91 | 79, 90 | mtbird 677 |
. . 3
|
| 92 | 27, 72 | pcprecl 12807 |
. . . . . . 7
|
| 93 | 6, 9, 26, 92 | syl12anc 1269 |
. . . . . 6
|
| 94 | 93 | simpld 112 |
. . . . 5
|
| 95 | nn0ltp1le 9505 |
. . . . 5
| |
| 96 | 44, 94, 95 | syl2anc 411 |
. . . 4
|
| 97 | 46 | nnzd 9564 |
. . . . . . 7
|
| 98 | peano2nn0 9405 |
. . . . . . . 8
| |
| 99 | 44, 98 | syl 14 |
. . . . . . 7
|
| 100 | dvdsexp 12367 |
. . . . . . . 8
| |
| 101 | 100 | 3expia 1229 |
. . . . . . 7
|
| 102 | 97, 99, 101 | syl2anc 411 |
. . . . . 6
|
| 103 | 93 | simprd 114 |
. . . . . . 7
|
| 104 | 46, 99 | nnexpcld 10912 |
. . . . . . . . 9
|
| 105 | 104 | nnzd 9564 |
. . . . . . . 8
|
| 106 | 46, 94 | nnexpcld 10912 |
. . . . . . . . 9
|
| 107 | 106 | nnzd 9564 |
. . . . . . . 8
|
| 108 | dvdstr 12334 |
. . . . . . . 8
| |
| 109 | 105, 107, 9, 108 | syl3anc 1271 |
. . . . . . 7
|
| 110 | 103, 109 | mpan2d 428 |
. . . . . 6
|
| 111 | 102, 110 | syld 45 |
. . . . 5
|
| 112 | 99 | nn0zd 9563 |
. . . . . 6
|
| 113 | 94 | nn0zd 9563 |
. . . . . 6
|
| 114 | eluz 9731 |
. . . . . 6
| |
| 115 | 112, 113, 114 | syl2anc 411 |
. . . . 5
|
| 116 | 52, 44 | expp1d 10891 |
. . . . . . 7
|
| 117 | 11, 13 | mulcld 8163 |
. . . . . . . . 9
|
| 118 | 47 | nncnd 9120 |
. . . . . . . . 9
|
| 119 | 47 | nnap0d 9152 |
. . . . . . . . 9
|
| 120 | 117, 118, 119 | divcanap2d 8935 |
. . . . . . . 8
|
| 121 | 53 | oveq2d 6016 |
. . . . . . . . . 10
|
| 122 | 55 | nncnd 9120 |
. . . . . . . . . . 11
|
| 123 | 49 | nncnd 9120 |
. . . . . . . . . . 11
|
| 124 | 55 | nnap0d 9152 |
. . . . . . . . . . 11
|
| 125 | 49 | nnap0d 9152 |
. . . . . . . . . . 11
|
| 126 | 11, 122, 13, 123, 124, 125 | divmuldivapd 8975 |
. . . . . . . . . 10
|
| 127 | 121, 126 | eqtr4d 2265 |
. . . . . . . . 9
|
| 128 | 127 | oveq2d 6016 |
. . . . . . . 8
|
| 129 | 120, 128 | eqtr3d 2264 |
. . . . . . 7
|
| 130 | 116, 129 | breq12d 4095 |
. . . . . 6
|
| 131 | 84, 88 | zmulcld 9571 |
. . . . . . 7
|
| 132 | 47 | nnne0d 9151 |
. . . . . . 7
|
| 133 | dvdscmulr 12326 |
. . . . . . 7
| |
| 134 | 97, 131, 48, 132, 133 | syl112anc 1275 |
. . . . . 6
|
| 135 | 130, 134 | bitrd 188 |
. . . . 5
|
| 136 | 111, 115, 135 | 3imtr3d 202 |
. . . 4
|
| 137 | 96, 136 | sylbid 150 |
. . 3
|
| 138 | 91, 137 | mtod 667 |
. 2
|
| 139 | 44 | nn0red 9419 |
. . 3
|
| 140 | 94 | nn0red 9419 |
. . 3
|
| 141 | 139, 140 | eqleltd 8259 |
. 2
|
| 142 | 73, 138, 141 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-gcd 12470 df-prm 12625 |
| This theorem is referenced by: pceulem 12812 pcmul 12819 |
| Copyright terms: Public domain | W3C validator |