Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvrabv | GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvrabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2306 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2306 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1515 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1515 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrab 2720 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1342 {crab 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rab 2451 |
This theorem is referenced by: pwnss 4133 acexmidlemv 5835 exmidac 7157 genipv 7442 ltexpri 7546 suplocsrlempr 7740 suplocsr 7742 zsupssdc 11876 sqne2sq 12098 eulerth 12154 odzval 12162 pcprecl 12210 pcprendvds 12211 pcpremul 12214 pceulem 12215 |
Copyright terms: Public domain | W3C validator |