| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrabv | GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabv | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvrabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2797 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 {crab 2512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 |
| This theorem is referenced by: pwnss 4242 acexmidlemv 5998 exmidac 7387 genipv 7692 ltexpri 7796 suplocsrlempr 7990 suplocsr 7992 zsupssdc 10453 bitsfzolem 12460 nninfctlemfo 12556 sqne2sq 12694 eulerth 12750 odzval 12759 pcprecl 12807 pcprendvds 12808 pcpremul 12811 pceulem 12812 4sqlem19 12927 lfgredg2dom 15924 |
| Copyright terms: Public domain | W3C validator |