![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvrabv | GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
Ref | Expression |
---|---|
cbvrabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabv | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2319 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1528 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvrabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrab 2737 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 {crab 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 |
This theorem is referenced by: pwnss 4161 acexmidlemv 5875 exmidac 7210 genipv 7510 ltexpri 7614 suplocsrlempr 7808 suplocsr 7810 zsupssdc 11957 sqne2sq 12179 eulerth 12235 odzval 12243 pcprecl 12291 pcprendvds 12292 pcpremul 12295 pceulem 12296 |
Copyright terms: Public domain | W3C validator |