ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabv GIF version

Theorem cbvrabv 2759
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvrabv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabv {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrabv
StepHypRef Expression
1 nfcv 2336 . 2 𝑥𝐴
2 nfcv 2336 . 2 𝑦𝐴
3 nfv 1539 . 2 𝑦𝜑
4 nfv 1539 . 2 𝑥𝜓
5 cbvrabv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrab 2758 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481
This theorem is referenced by:  pwnss  4188  acexmidlemv  5916  exmidac  7269  genipv  7569  ltexpri  7673  suplocsrlempr  7867  suplocsr  7869  zsupssdc  12091  nninfctlemfo  12177  sqne2sq  12315  eulerth  12371  odzval  12379  pcprecl  12427  pcprendvds  12428  pcpremul  12431  pceulem  12432  4sqlem19  12547
  Copyright terms: Public domain W3C validator