| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrabv | GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabv | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbvrabv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2771 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 {crab 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 |
| This theorem is referenced by: pwnss 4211 acexmidlemv 5955 exmidac 7337 genipv 7642 ltexpri 7746 suplocsrlempr 7940 suplocsr 7942 zsupssdc 10403 bitsfzolem 12340 nninfctlemfo 12436 sqne2sq 12574 eulerth 12630 odzval 12639 pcprecl 12687 pcprendvds 12688 pcpremul 12691 pceulem 12692 4sqlem19 12807 |
| Copyright terms: Public domain | W3C validator |