ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabv GIF version

Theorem cbvrabv 2770
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvrabv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabv {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrabv
StepHypRef Expression
1 nfcv 2347 . 2 𝑥𝐴
2 nfcv 2347 . 2 𝑦𝐴
3 nfv 1550 . 2 𝑦𝜑
4 nfv 1550 . 2 𝑥𝜓
5 cbvrabv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrab 2769 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  {crab 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492
This theorem is referenced by:  pwnss  4202  acexmidlemv  5932  exmidac  7303  genipv  7604  ltexpri  7708  suplocsrlempr  7902  suplocsr  7904  zsupssdc  10362  bitsfzolem  12184  nninfctlemfo  12280  sqne2sq  12418  eulerth  12474  odzval  12483  pcprecl  12531  pcprendvds  12532  pcpremul  12535  pceulem  12536  4sqlem19  12651
  Copyright terms: Public domain W3C validator