ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrabv GIF version

Theorem cbvrabv 2738
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
Hypothesis
Ref Expression
cbvrabv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabv {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrabv
StepHypRef Expression
1 nfcv 2319 . 2 𝑥𝐴
2 nfcv 2319 . 2 𝑦𝐴
3 nfv 1528 . 2 𝑦𝜑
4 nfv 1528 . 2 𝑥𝜓
5 cbvrabv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrab 2737 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464
This theorem is referenced by:  pwnss  4161  acexmidlemv  5875  exmidac  7210  genipv  7510  ltexpri  7614  suplocsrlempr  7808  suplocsr  7810  zsupssdc  11957  sqne2sq  12179  eulerth  12235  odzval  12243  pcprecl  12291  pcprendvds  12292  pcpremul  12295  pceulem  12296
  Copyright terms: Public domain W3C validator