ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerth Unicode version

Theorem eulerth 12251
Description: Euler's theorem, a generalization of Fermat's little theorem. If  A and  N are coprime, then  A ^ phi ( N )  ==  1 (mod  N). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )

Proof of Theorem eulerth
Dummy variables  f  y  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 12233 . . . . . . . 8  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
21nnnn0d 9247 . . . . . . 7  |-  ( N  e.  NN  ->  ( phi `  N )  e. 
NN0 )
3 hashfz1 10781 . . . . . . 7  |-  ( ( phi `  N )  e.  NN0  ->  ( `  (
1 ... ( phi `  N ) ) )  =  ( phi `  N ) )
42, 3syl 14 . . . . . 6  |-  ( N  e.  NN  ->  ( `  ( 1 ... ( phi `  N ) ) )  =  ( phi `  N ) )
5 dfphi2 12238 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } ) )
64, 5eqtrd 2222 . . . . 5  |-  ( N  e.  NN  ->  ( `  ( 1 ... ( phi `  N ) ) )  =  ( `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
763ad2ant1 1020 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( `  ( 1 ... ( phi `  N ) ) )  =  ( `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
8 1zzd 9298 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  1  e.  ZZ )
913ad2ant1 1020 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  NN )
109nnzd 9392 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  ZZ )
118, 10fzfigd 10449 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
1 ... ( phi `  N ) )  e. 
Fin )
12 id 19 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
13 oveq1 5898 . . . . . . . 8  |-  ( k  =  y  ->  (
k  gcd  N )  =  ( y  gcd 
N ) )
1413eqeq1d 2198 . . . . . . 7  |-  ( k  =  y  ->  (
( k  gcd  N
)  =  1  <->  (
y  gcd  N )  =  1 ) )
1514cbvrabv 2751 . . . . . 6  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  =  {
y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }
1612, 15eulerthlemfi 12246 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin )
17 hashen 10782 . . . . 5  |-  ( ( ( 1 ... ( phi `  N ) )  e.  Fin  /\  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin )  ->  ( ( `  ( 1 ... ( phi `  N ) ) )  =  ( `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )  <-> 
( 1 ... ( phi `  N ) ) 
~~  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } ) )
1811, 16, 17syl2anc 411 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( `  ( 1 ... ( phi `  N
) ) )  =  ( `  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } )  <->  ( 1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
197, 18mpbid 147 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
20 bren 6765 . . 3  |-  ( ( 1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  <->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
2119, 20sylib 122 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
22 simpl 109 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
23 simpr 110 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  f :
( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
2422, 15, 23eulerthlemth 12250 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( ( A ^ ( phi `  N ) )  mod 
N )  =  ( 1  mod  N ) )
2521, 24exlimddv 1910 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   {crab 2472   class class class wbr 4018   -1-1-onto->wf1o 5230   ` cfv 5231  (class class class)co 5891    ~~ cen 6756   Fincfn 6758   0cc0 7829   1c1 7830   NNcn 8937   NN0cn0 9194   ZZcz 9271   ...cfz 10026  ..^cfzo 10160    mod cmo 10340   ^cexp 10537  ♯chash 10773    gcd cgcd 11961   phicphi 12227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-sup 7001  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-fl 10288  df-mod 10341  df-seqfrec 10464  df-exp 10538  df-ihash 10774  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-clim 11305  df-proddc 11577  df-dvds 11813  df-gcd 11962  df-phi 12229
This theorem is referenced by:  fermltl  12252  prmdiv  12253  odzcllem  12260  odzphi  12264  vfermltl  12269  lgslem1  14798
  Copyright terms: Public domain W3C validator