ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eulerth Unicode version

Theorem eulerth 12096
Description: Euler's theorem, a generalization of Fermat's little theorem. If  A and  N are coprime, then  A ^ phi ( N )  ==  1 (mod  N). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )

Proof of Theorem eulerth
Dummy variables  f  y  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 12078 . . . . . . . 8  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
21nnnn0d 9137 . . . . . . 7  |-  ( N  e.  NN  ->  ( phi `  N )  e. 
NN0 )
3 hashfz1 10650 . . . . . . 7  |-  ( ( phi `  N )  e.  NN0  ->  ( `  (
1 ... ( phi `  N ) ) )  =  ( phi `  N ) )
42, 3syl 14 . . . . . 6  |-  ( N  e.  NN  ->  ( `  ( 1 ... ( phi `  N ) ) )  =  ( phi `  N ) )
5 dfphi2 12083 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( `  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } ) )
64, 5eqtrd 2190 . . . . 5  |-  ( N  e.  NN  ->  ( `  ( 1 ... ( phi `  N ) ) )  =  ( `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
763ad2ant1 1003 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( `  ( 1 ... ( phi `  N ) ) )  =  ( `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
8 1zzd 9188 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  1  e.  ZZ )
913ad2ant1 1003 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  NN )
109nnzd 9279 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( phi `  N )  e.  ZZ )
118, 10fzfigd 10323 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
1 ... ( phi `  N ) )  e. 
Fin )
12 id 19 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
13 oveq1 5828 . . . . . . . 8  |-  ( k  =  y  ->  (
k  gcd  N )  =  ( y  gcd 
N ) )
1413eqeq1d 2166 . . . . . . 7  |-  ( k  =  y  ->  (
( k  gcd  N
)  =  1  <->  (
y  gcd  N )  =  1 ) )
1514cbvrabv 2711 . . . . . 6  |-  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  =  {
y  e.  ( 0..^ N )  |  ( y  gcd  N )  =  1 }
1612, 15eulerthlemfi 12091 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin )
17 hashen 10651 . . . . 5  |-  ( ( ( 1 ... ( phi `  N ) )  e.  Fin  /\  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  e.  Fin )  ->  ( ( `  ( 1 ... ( phi `  N ) ) )  =  ( `  {
k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )  <-> 
( 1 ... ( phi `  N ) ) 
~~  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } ) )
1811, 16, 17syl2anc 409 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( `  ( 1 ... ( phi `  N
) ) )  =  ( `  { k  e.  ( 0..^ N )  |  ( k  gcd 
N )  =  1 } )  <->  ( 1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } ) )
197, 18mpbid 146 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
20 bren 6689 . . 3  |-  ( ( 1 ... ( phi `  N ) )  ~~  { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 }  <->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
2119, 20sylib 121 . 2  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  E. f 
f : ( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
22 simpl 108 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
23 simpr 109 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  f :
( 1 ... ( phi `  N ) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N )  =  1 } )
2422, 15, 23eulerthlemth 12095 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  f : ( 1 ... ( phi `  N
) ) -1-1-onto-> { k  e.  ( 0..^ N )  |  ( k  gcd  N
)  =  1 } )  ->  ( ( A ^ ( phi `  N ) )  mod 
N )  =  ( 1  mod  N ) )
2521, 24exlimddv 1878 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( A ^ ( phi `  N ) )  mod  N )  =  ( 1  mod  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335   E.wex 1472    e. wcel 2128   {crab 2439   class class class wbr 3965   -1-1-onto->wf1o 5168   ` cfv 5169  (class class class)co 5821    ~~ cen 6680   Fincfn 6682   0cc0 7726   1c1 7727   NNcn 8827   NN0cn0 9084   ZZcz 9161   ...cfz 9905  ..^cfzo 10034    mod cmo 10214   ^cexp 10411  ♯chash 10642    gcd cgcd 11821   phicphi 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-proddc 11441  df-dvds 11677  df-gcd 11822  df-phi 12074
This theorem is referenced by:  fermltl  12097  prmdiv  12098
  Copyright terms: Public domain W3C validator