ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidac Unicode version

Theorem exmidac 7165
Description: The axiom of choice implies excluded middle. See acexmid 5841 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
Assertion
Ref Expression
exmidac  |-  (CHOICE  -> EXMID )

Proof of Theorem exmidac
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . . . 4  |-  ( u  =  x  ->  (
u  =  (/)  <->  x  =  (/) ) )
21orbi1d 781 . . 3  |-  ( u  =  x  ->  (
( u  =  (/)  \/  y  =  { (/) } )  <->  ( x  =  (/)  \/  y  =  { (/)
} ) ) )
32cbvrabv 2725 . 2  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  (/)  \/  y  =  { (/) } ) }  =  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }
4 eqeq1 2172 . . . 4  |-  ( u  =  x  ->  (
u  =  { (/) }  <-> 
x  =  { (/) } ) )
54orbi1d 781 . . 3  |-  ( u  =  x  ->  (
( u  =  { (/)
}  \/  y  =  { (/) } )  <->  ( x  =  { (/) }  \/  y  =  { (/) } ) ) )
65cbvrabv 2725 . 2  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  y  =  { (/) } ) }  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
7 eqid 2165 . 2  |-  { {
u  e.  { (/) ,  { (/) } }  | 
( u  =  (/)  \/  y  =  { (/) } ) } ,  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  y  =  { (/) } ) } }  =  { {
u  e.  { (/) ,  { (/) } }  | 
( u  =  (/)  \/  y  =  { (/) } ) } ,  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  y  =  { (/) } ) } }
83, 6, 7exmidaclem 7164 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343   {crab 2448   (/)c0 3409   {csn 3576   {cpr 3577  EXMIDwem 4173  CHOICEwac 7161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-exmid 4174  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ac 7162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator