ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidac Unicode version

Theorem exmidac 7276
Description: The axiom of choice implies excluded middle. See acexmid 5921 for more discussion of this theorem and a way of stating it without using CHOICE or EXMID. (Contributed by Jim Kingdon, 21-Nov-2023.)
Assertion
Ref Expression
exmidac  |-  (CHOICE  -> EXMID )

Proof of Theorem exmidac
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . . 4  |-  ( u  =  x  ->  (
u  =  (/)  <->  x  =  (/) ) )
21orbi1d 792 . . 3  |-  ( u  =  x  ->  (
( u  =  (/)  \/  y  =  { (/) } )  <->  ( x  =  (/)  \/  y  =  { (/)
} ) ) )
32cbvrabv 2762 . 2  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  (/)  \/  y  =  { (/) } ) }  =  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }
4 eqeq1 2203 . . . 4  |-  ( u  =  x  ->  (
u  =  { (/) }  <-> 
x  =  { (/) } ) )
54orbi1d 792 . . 3  |-  ( u  =  x  ->  (
( u  =  { (/)
}  \/  y  =  { (/) } )  <->  ( x  =  { (/) }  \/  y  =  { (/) } ) ) )
65cbvrabv 2762 . 2  |-  { u  e.  { (/) ,  { (/) } }  |  ( u  =  { (/) }  \/  y  =  { (/) } ) }  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
7 eqid 2196 . 2  |-  { {
u  e.  { (/) ,  { (/) } }  | 
( u  =  (/)  \/  y  =  { (/) } ) } ,  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  y  =  { (/) } ) } }  =  { {
u  e.  { (/) ,  { (/) } }  | 
( u  =  (/)  \/  y  =  { (/) } ) } ,  {
u  e.  { (/) ,  { (/) } }  | 
( u  =  { (/)
}  \/  y  =  { (/) } ) } }
83, 6, 7exmidaclem 7275 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364   {crab 2479   (/)c0 3450   {csn 3622   {cpr 3623  EXMIDwem 4227  CHOICEwac 7272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-exmid 4228  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ac 7273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator