ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsr Unicode version

Theorem suplocsr 7869
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
Hypotheses
Ref Expression
suplocsr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocsr.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsr.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsr  |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem suplocsr
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocsr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 eleq1w 2254 . . . 4  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
32cbvexv 1930 . . 3  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 opeq1 3804 . . . . . . 7  |-  ( b  =  c  ->  <. b ,  1P >.  =  <. c ,  1P >. )
65eceq1d 6623 . . . . . 6  |-  ( b  =  c  ->  [ <. b ,  1P >. ]  ~R  =  [ <. c ,  1P >. ]  ~R  )
76oveq2d 5934 . . . . 5  |-  ( b  =  c  ->  (
a  +R  [ <. b ,  1P >. ]  ~R  )  =  ( a  +R  [ <. c ,  1P >. ]  ~R  ) )
87eleq1d 2262 . . . 4  |-  ( b  =  c  ->  (
( a  +R  [ <. b ,  1P >. ]  ~R  )  e.  A  <->  ( a  +R  [ <. c ,  1P >. ]  ~R  )  e.  A )
)
98cbvrabv 2759 . . 3  |-  { b  e.  P.  |  ( a  +R  [ <. b ,  1P >. ]  ~R  )  e.  A }  =  { c  e.  P.  |  ( a  +R 
[ <. c ,  1P >. ]  ~R  )  e.  A }
10 suplocsr.ub . . . . 5  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
11 ltrelsr 7798 . . . . . . . . . 10  |-  <R  C_  ( R.  X.  R. )
1211brel 4711 . . . . . . . . 9  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
1312simpld 112 . . . . . . . 8  |-  ( y 
<R  x  ->  y  e. 
R. )
1413ralimi 2557 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
15 dfss3 3169 . . . . . . 7  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
1614, 15sylibr 134 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
1716rexlimivw 2607 . . . . 5  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  A  C_  R. )
1810, 17syl 14 . . . 4  |-  ( ph  ->  A  C_  R. )
1918adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  A  C_ 
R. )
20 simpr 110 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  A )
2110adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  R.  A. y  e.  A  y  <R  x
)
22 suplocsr.loc . . . 4  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2322adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  A. x  e.  R.  A. y  e. 
R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y
) ) )
249, 19, 20, 21, 23suplocsrlem 7868 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
254, 24exlimddv 1910 1  |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3153   <.cop 3621   class class class wbr 4029  (class class class)co 5918   [cec 6585   P.cnp 7351   1Pc1p 7352    ~R cer 7356   R.cnr 7357    +R cplr 7361    <R cltr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-iltp 7530  df-enr 7786  df-nr 7787  df-plr 7788  df-mr 7789  df-ltr 7790  df-0r 7791  df-1r 7792  df-m1r 7793
This theorem is referenced by:  axpre-suploclemres  7961
  Copyright terms: Public domain W3C validator