ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsr Unicode version

Theorem suplocsr 7876
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
Hypotheses
Ref Expression
suplocsr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocsr.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsr.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsr  |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem suplocsr
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocsr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 eleq1w 2257 . . . 4  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
32cbvexv 1933 . . 3  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 122 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 opeq1 3808 . . . . . . 7  |-  ( b  =  c  ->  <. b ,  1P >.  =  <. c ,  1P >. )
65eceq1d 6628 . . . . . 6  |-  ( b  =  c  ->  [ <. b ,  1P >. ]  ~R  =  [ <. c ,  1P >. ]  ~R  )
76oveq2d 5938 . . . . 5  |-  ( b  =  c  ->  (
a  +R  [ <. b ,  1P >. ]  ~R  )  =  ( a  +R  [ <. c ,  1P >. ]  ~R  ) )
87eleq1d 2265 . . . 4  |-  ( b  =  c  ->  (
( a  +R  [ <. b ,  1P >. ]  ~R  )  e.  A  <->  ( a  +R  [ <. c ,  1P >. ]  ~R  )  e.  A )
)
98cbvrabv 2762 . . 3  |-  { b  e.  P.  |  ( a  +R  [ <. b ,  1P >. ]  ~R  )  e.  A }  =  { c  e.  P.  |  ( a  +R 
[ <. c ,  1P >. ]  ~R  )  e.  A }
10 suplocsr.ub . . . . 5  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
11 ltrelsr 7805 . . . . . . . . . 10  |-  <R  C_  ( R.  X.  R. )
1211brel 4715 . . . . . . . . 9  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
1312simpld 112 . . . . . . . 8  |-  ( y 
<R  x  ->  y  e. 
R. )
1413ralimi 2560 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
15 dfss3 3173 . . . . . . 7  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
1614, 15sylibr 134 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
1716rexlimivw 2610 . . . . 5  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  A  C_  R. )
1810, 17syl 14 . . . 4  |-  ( ph  ->  A  C_  R. )
1918adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  A  C_ 
R. )
20 simpr 110 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  A )
2110adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  R.  A. y  e.  A  y  <R  x
)
22 suplocsr.loc . . . 4  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2322adantr 276 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  A. x  e.  R.  A. y  e. 
R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y
) ) )
249, 19, 20, 21, 23suplocsrlem 7875 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
254, 24exlimddv 1913 1  |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   <.cop 3625   class class class wbr 4033  (class class class)co 5922   [cec 6590   P.cnp 7358   1Pc1p 7359    ~R cer 7363   R.cnr 7364    +R cplr 7368    <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-iltp 7537  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-ltr 7797  df-0r 7798  df-1r 7799  df-m1r 7800
This theorem is referenced by:  axpre-suploclemres  7968
  Copyright terms: Public domain W3C validator