ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsr Unicode version

Theorem suplocsr 7641
Description: An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
Hypotheses
Ref Expression
suplocsr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocsr.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsr.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsr  |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem suplocsr
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocsr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 eleq1w 2201 . . . 4  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
32cbvexv 1891 . . 3  |-  ( E. x  x  e.  A  <->  E. a  a  e.  A
)
41, 3sylib 121 . 2  |-  ( ph  ->  E. a  a  e.  A )
5 opeq1 3713 . . . . . . 7  |-  ( b  =  c  ->  <. b ,  1P >.  =  <. c ,  1P >. )
65eceq1d 6473 . . . . . 6  |-  ( b  =  c  ->  [ <. b ,  1P >. ]  ~R  =  [ <. c ,  1P >. ]  ~R  )
76oveq2d 5798 . . . . 5  |-  ( b  =  c  ->  (
a  +R  [ <. b ,  1P >. ]  ~R  )  =  ( a  +R  [ <. c ,  1P >. ]  ~R  ) )
87eleq1d 2209 . . . 4  |-  ( b  =  c  ->  (
( a  +R  [ <. b ,  1P >. ]  ~R  )  e.  A  <->  ( a  +R  [ <. c ,  1P >. ]  ~R  )  e.  A )
)
98cbvrabv 2688 . . 3  |-  { b  e.  P.  |  ( a  +R  [ <. b ,  1P >. ]  ~R  )  e.  A }  =  { c  e.  P.  |  ( a  +R 
[ <. c ,  1P >. ]  ~R  )  e.  A }
10 suplocsr.ub . . . . 5  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
11 ltrelsr 7570 . . . . . . . . . 10  |-  <R  C_  ( R.  X.  R. )
1211brel 4599 . . . . . . . . 9  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
1312simpld 111 . . . . . . . 8  |-  ( y 
<R  x  ->  y  e. 
R. )
1413ralimi 2498 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
15 dfss3 3092 . . . . . . 7  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
1614, 15sylibr 133 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
1716rexlimivw 2548 . . . . 5  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  A  C_  R. )
1810, 17syl 14 . . . 4  |-  ( ph  ->  A  C_  R. )
1918adantr 274 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  A  C_ 
R. )
20 simpr 109 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  A )
2110adantr 274 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  R.  A. y  e.  A  y  <R  x
)
22 suplocsr.loc . . . 4  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
2322adantr 274 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  A. x  e.  R.  A. y  e. 
R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y
) ) )
249, 19, 20, 21, 23suplocsrlem 7640 . 2  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
254, 24exlimddv 1871 1  |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421    C_ wss 3076   <.cop 3535   class class class wbr 3937  (class class class)co 5782   [cec 6435   P.cnp 7123   1Pc1p 7124    ~R cer 7128   R.cnr 7129    +R cplr 7133    <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-iltp 7302  df-enr 7558  df-nr 7559  df-plr 7560  df-mr 7561  df-ltr 7562  df-0r 7563  df-1r 7564  df-m1r 7565
This theorem is referenced by:  axpre-suploclemres  7733
  Copyright terms: Public domain W3C validator