| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemv | Unicode version | ||
| Description: Lemma for acexmid 6000.
This is acexmid 6000 with additional disjoint variable conditions,
most
notably between (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlemv.choice |
|
| Ref | Expression |
|---|---|
| acexmidlemv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem 4621 |
. . . 4
| |
| 2 | pp0ex 4273 |
. . . . 5
| |
| 3 | 2 | rabex 4228 |
. . . 4
|
| 4 | prexg 4295 |
. . . 4
| |
| 5 | 1, 3, 4 | mp2an 426 |
. . 3
|
| 6 | raleq 2728 |
. . . 4
| |
| 7 | 6 | exbidv 1871 |
. . 3
|
| 8 | acexmidlemv.choice |
. . 3
| |
| 9 | 5, 7, 8 | vtocl 2855 |
. 2
|
| 10 | eqeq1 2236 |
. . . . . 6
| |
| 11 | 10 | orbi1d 796 |
. . . . 5
|
| 12 | 11 | cbvrabv 2798 |
. . . 4
|
| 13 | eqeq1 2236 |
. . . . . 6
| |
| 14 | 13 | orbi1d 796 |
. . . . 5
|
| 15 | 14 | cbvrabv 2798 |
. . . 4
|
| 16 | eqid 2229 |
. . . 4
| |
| 17 | 12, 15, 16 | acexmidlem2 5998 |
. . 3
|
| 18 | 17 | exlimiv 1644 |
. 2
|
| 19 | 9, 18 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iota 5278 df-riota 5954 |
| This theorem is referenced by: acexmid 6000 |
| Copyright terms: Public domain | W3C validator |