| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > acexmidlemv | Unicode version | ||
| Description: Lemma for acexmid 5921.
 
       This is acexmid 5921 with additional disjoint variable conditions,
most
       notably between  (Contributed by Jim Kingdon, 6-Aug-2019.)  | 
| Ref | Expression | 
|---|---|
| acexmidlemv.choice | 
 | 
| Ref | Expression | 
|---|---|
| acexmidlemv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsucelsucexmidlem 4565 | 
. . . 4
 | |
| 2 | pp0ex 4222 | 
. . . . 5
 | |
| 3 | 2 | rabex 4177 | 
. . . 4
 | 
| 4 | prexg 4244 | 
. . . 4
 | |
| 5 | 1, 3, 4 | mp2an 426 | 
. . 3
 | 
| 6 | raleq 2693 | 
. . . 4
 | |
| 7 | 6 | exbidv 1839 | 
. . 3
 | 
| 8 | acexmidlemv.choice | 
. . 3
 | |
| 9 | 5, 7, 8 | vtocl 2818 | 
. 2
 | 
| 10 | eqeq1 2203 | 
. . . . . 6
 | |
| 11 | 10 | orbi1d 792 | 
. . . . 5
 | 
| 12 | 11 | cbvrabv 2762 | 
. . . 4
 | 
| 13 | eqeq1 2203 | 
. . . . . 6
 | |
| 14 | 13 | orbi1d 792 | 
. . . . 5
 | 
| 15 | 14 | cbvrabv 2762 | 
. . . 4
 | 
| 16 | eqid 2196 | 
. . . 4
 | |
| 17 | 12, 15, 16 | acexmidlem2 5919 | 
. . 3
 | 
| 18 | 17 | exlimiv 1612 | 
. 2
 | 
| 19 | 9, 18 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: acexmid 5921 | 
| Copyright terms: Public domain | W3C validator |