Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlemv | Unicode version |
Description: Lemma for acexmid 5841.
This is acexmid 5841 with additional disjoint variable conditions, most notably between and . (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlemv.choice |
Ref | Expression |
---|---|
acexmidlemv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucelsucexmidlem 4506 | . . . 4 | |
2 | pp0ex 4168 | . . . . 5 | |
3 | 2 | rabex 4126 | . . . 4 |
4 | prexg 4189 | . . . 4 | |
5 | 1, 3, 4 | mp2an 423 | . . 3 |
6 | raleq 2661 | . . . 4 | |
7 | 6 | exbidv 1813 | . . 3 |
8 | acexmidlemv.choice | . . 3 | |
9 | 5, 7, 8 | vtocl 2780 | . 2 |
10 | eqeq1 2172 | . . . . . 6 | |
11 | 10 | orbi1d 781 | . . . . 5 |
12 | 11 | cbvrabv 2725 | . . . 4 |
13 | eqeq1 2172 | . . . . . 6 | |
14 | 13 | orbi1d 781 | . . . . 5 |
15 | 14 | cbvrabv 2725 | . . . 4 |
16 | eqid 2165 | . . . 4 | |
17 | 12, 15, 16 | acexmidlem2 5839 | . . 3 |
18 | 17 | exlimiv 1586 | . 2 |
19 | 9, 18 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 698 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 wreu 2446 crab 2448 cvv 2726 c0 3409 csn 3576 cpr 3577 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iota 5153 df-riota 5798 |
This theorem is referenced by: acexmid 5841 |
Copyright terms: Public domain | W3C validator |