ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemv Unicode version

Theorem acexmidlemv 5999
Description: Lemma for acexmid 6000.

This is acexmid 6000 with additional disjoint variable conditions, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

Hypothesis
Ref Expression
acexmidlemv.choice  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
Assertion
Ref Expression
acexmidlemv  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y, z, w, v, u

Proof of Theorem acexmidlemv
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem 4621 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) }  e.  On
2 pp0ex 4273 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
32rabex 4228 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) }  e.  _V
4 prexg 4295 . . . 4  |-  ( ( { s  e.  { (/)
,  { (/) } }  |  ( s  =  (/)  \/  ph ) }  e.  On  /\  {
s  e.  { (/) ,  { (/) } }  | 
( s  =  { (/)
}  \/  ph ) }  e.  _V )  ->  { { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  e.  _V )
51, 3, 4mp2an 426 . . 3  |-  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  e.  _V
6 raleq 2728 . . . 4  |-  ( x  =  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } }  ->  ( A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. z  e.  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
76exbidv 1871 . . 3  |-  ( x  =  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } }  ->  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. y A. z  e.  { { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
) )
8 acexmidlemv.choice . . 3  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
95, 7, 8vtocl 2855 . 2  |-  E. y A. z  e.  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )
10 eqeq1 2236 . . . . . 6  |-  ( s  =  t  ->  (
s  =  (/)  <->  t  =  (/) ) )
1110orbi1d 796 . . . . 5  |-  ( s  =  t  ->  (
( s  =  (/)  \/ 
ph )  <->  ( t  =  (/)  \/  ph )
) )
1211cbvrabv 2798 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) }  =  {
t  e.  { (/) ,  { (/) } }  | 
( t  =  (/)  \/ 
ph ) }
13 eqeq1 2236 . . . . . 6  |-  ( s  =  t  ->  (
s  =  { (/) }  <-> 
t  =  { (/) } ) )
1413orbi1d 796 . . . . 5  |-  ( s  =  t  ->  (
( s  =  { (/)
}  \/  ph )  <->  ( t  =  { (/) }  \/  ph ) ) )
1514cbvrabv 2798 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) }  =  { t  e. 
{ (/) ,  { (/) } }  |  ( t  =  { (/) }  \/  ph ) }
16 eqid 2229 . . . 4  |-  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  =  { { s  e.  { (/)
,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }
1712, 15, 16acexmidlem2 5998 . . 3  |-  ( A. z  e.  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph )
)
1817exlimiv 1644 . 2  |-  ( E. y A. z  e. 
{ { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
199, 18ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   E!wreu 2510   {crab 2512   _Vcvv 2799   (/)c0 3491   {csn 3666   {cpr 3667   Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iota 5278  df-riota 5954
This theorem is referenced by:  acexmid  6000
  Copyright terms: Public domain W3C validator