ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemv Unicode version

Theorem acexmidlemv 5942
Description: Lemma for acexmid 5943.

This is acexmid 5943 with additional disjoint variable conditions, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

Hypothesis
Ref Expression
acexmidlemv.choice  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
Assertion
Ref Expression
acexmidlemv  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y, z, w, v, u

Proof of Theorem acexmidlemv
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem 4577 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) }  e.  On
2 pp0ex 4233 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
32rabex 4188 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) }  e.  _V
4 prexg 4255 . . . 4  |-  ( ( { s  e.  { (/)
,  { (/) } }  |  ( s  =  (/)  \/  ph ) }  e.  On  /\  {
s  e.  { (/) ,  { (/) } }  | 
( s  =  { (/)
}  \/  ph ) }  e.  _V )  ->  { { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  e.  _V )
51, 3, 4mp2an 426 . . 3  |-  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  e.  _V
6 raleq 2702 . . . 4  |-  ( x  =  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } }  ->  ( A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. z  e.  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
76exbidv 1848 . . 3  |-  ( x  =  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } }  ->  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. y A. z  e.  { { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
) )
8 acexmidlemv.choice . . 3  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
95, 7, 8vtocl 2827 . 2  |-  E. y A. z  e.  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )
10 eqeq1 2212 . . . . . 6  |-  ( s  =  t  ->  (
s  =  (/)  <->  t  =  (/) ) )
1110orbi1d 793 . . . . 5  |-  ( s  =  t  ->  (
( s  =  (/)  \/ 
ph )  <->  ( t  =  (/)  \/  ph )
) )
1211cbvrabv 2771 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) }  =  {
t  e.  { (/) ,  { (/) } }  | 
( t  =  (/)  \/ 
ph ) }
13 eqeq1 2212 . . . . . 6  |-  ( s  =  t  ->  (
s  =  { (/) }  <-> 
t  =  { (/) } ) )
1413orbi1d 793 . . . . 5  |-  ( s  =  t  ->  (
( s  =  { (/)
}  \/  ph )  <->  ( t  =  { (/) }  \/  ph ) ) )
1514cbvrabv 2771 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) }  =  { t  e. 
{ (/) ,  { (/) } }  |  ( t  =  { (/) }  \/  ph ) }
16 eqid 2205 . . . 4  |-  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  =  { { s  e.  { (/)
,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }
1712, 15, 16acexmidlem2 5941 . . 3  |-  ( A. z  e.  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph )
)
1817exlimiv 1621 . 2  |-  ( E. y A. z  e. 
{ { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
199, 18ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   {crab 2488   _Vcvv 2772   (/)c0 3460   {csn 3633   {cpr 3634   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iota 5232  df-riota 5899
This theorem is referenced by:  acexmid  5943
  Copyright terms: Public domain W3C validator