ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemv Unicode version

Theorem acexmidlemv 5965
Description: Lemma for acexmid 5966.

This is acexmid 5966 with additional disjoint variable conditions, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

Hypothesis
Ref Expression
acexmidlemv.choice  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
Assertion
Ref Expression
acexmidlemv  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y, z, w, v, u

Proof of Theorem acexmidlemv
Dummy variables  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem 4595 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) }  e.  On
2 pp0ex 4249 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
32rabex 4204 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) }  e.  _V
4 prexg 4271 . . . 4  |-  ( ( { s  e.  { (/)
,  { (/) } }  |  ( s  =  (/)  \/  ph ) }  e.  On  /\  {
s  e.  { (/) ,  { (/) } }  | 
( s  =  { (/)
}  \/  ph ) }  e.  _V )  ->  { { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  e.  _V )
51, 3, 4mp2an 426 . . 3  |-  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  e.  _V
6 raleq 2705 . . . 4  |-  ( x  =  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } }  ->  ( A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  <->  A. z  e.  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u ) ) )
76exbidv 1849 . . 3  |-  ( x  =  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } }  ->  ( E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)  <->  E. y A. z  e.  { { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )
) )
8 acexmidlemv.choice . . 3  |-  E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y 
( z  e.  u  /\  v  e.  u
)
95, 7, 8vtocl 2832 . 2  |-  E. y A. z  e.  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )
10 eqeq1 2214 . . . . . 6  |-  ( s  =  t  ->  (
s  =  (/)  <->  t  =  (/) ) )
1110orbi1d 793 . . . . 5  |-  ( s  =  t  ->  (
( s  =  (/)  \/ 
ph )  <->  ( t  =  (/)  \/  ph )
) )
1211cbvrabv 2775 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) }  =  {
t  e.  { (/) ,  { (/) } }  | 
( t  =  (/)  \/ 
ph ) }
13 eqeq1 2214 . . . . . 6  |-  ( s  =  t  ->  (
s  =  { (/) }  <-> 
t  =  { (/) } ) )
1413orbi1d 793 . . . . 5  |-  ( s  =  t  ->  (
( s  =  { (/)
}  \/  ph )  <->  ( t  =  { (/) }  \/  ph ) ) )
1514cbvrabv 2775 . . . 4  |-  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) }  =  { t  e. 
{ (/) ,  { (/) } }  |  ( t  =  { (/) }  \/  ph ) }
16 eqid 2207 . . . 4  |-  { {
s  e.  { (/) ,  { (/) } }  | 
( s  =  (/)  \/ 
ph ) } ,  { s  e.  { (/)
,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }  =  { { s  e.  { (/)
,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } }
1712, 15, 16acexmidlem2 5964 . . 3  |-  ( A. z  e.  { { s  e.  { (/) ,  { (/)
} }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/)
} }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph )
)
1817exlimiv 1622 . 2  |-  ( E. y A. z  e. 
{ { s  e. 
{ (/) ,  { (/) } }  |  ( s  =  (/)  \/  ph ) } ,  { s  e.  { (/) ,  { (/) } }  |  ( s  =  { (/) }  \/  ph ) } } A. w  e.  z  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
199, 18ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   E!wreu 2488   {crab 2490   _Vcvv 2776   (/)c0 3468   {csn 3643   {cpr 3644   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-iota 5251  df-riota 5922
This theorem is referenced by:  acexmid  5966
  Copyright terms: Public domain W3C validator