| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acexmidlemv | Unicode version | ||
| Description: Lemma for acexmid 5966.
This is acexmid 5966 with additional disjoint variable conditions,
most
notably between (Contributed by Jim Kingdon, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| acexmidlemv.choice |
|
| Ref | Expression |
|---|---|
| acexmidlemv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucelsucexmidlem 4595 |
. . . 4
| |
| 2 | pp0ex 4249 |
. . . . 5
| |
| 3 | 2 | rabex 4204 |
. . . 4
|
| 4 | prexg 4271 |
. . . 4
| |
| 5 | 1, 3, 4 | mp2an 426 |
. . 3
|
| 6 | raleq 2705 |
. . . 4
| |
| 7 | 6 | exbidv 1849 |
. . 3
|
| 8 | acexmidlemv.choice |
. . 3
| |
| 9 | 5, 7, 8 | vtocl 2832 |
. 2
|
| 10 | eqeq1 2214 |
. . . . . 6
| |
| 11 | 10 | orbi1d 793 |
. . . . 5
|
| 12 | 11 | cbvrabv 2775 |
. . . 4
|
| 13 | eqeq1 2214 |
. . . . . 6
| |
| 14 | 13 | orbi1d 793 |
. . . . 5
|
| 15 | 14 | cbvrabv 2775 |
. . . 4
|
| 16 | eqid 2207 |
. . . 4
| |
| 17 | 12, 15, 16 | acexmidlem2 5964 |
. . 3
|
| 18 | 17 | exlimiv 1622 |
. 2
|
| 19 | 9, 18 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iota 5251 df-riota 5922 |
| This theorem is referenced by: acexmid 5966 |
| Copyright terms: Public domain | W3C validator |