ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit Unicode version

Theorem crngunit 13607
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5  |-  U  =  (Unit `  R )
21a1i 9 . . . 4  |-  ( R  e.  CRing  ->  U  =  (Unit `  R ) )
3 crngunit.2 . . . . 5  |-  .1.  =  ( 1r `  R )
43a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .1.  =  ( 1r `  R ) )
5 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
65a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .||  =  (
||r `  R ) )
7 eqidd 2194 . . . 4  |-  ( R  e.  CRing  ->  (oppr
`  R )  =  (oppr
`  R ) )
8 eqidd 2194 . . . 4  |-  ( R  e.  CRing  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
9 crngring 13504 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
10 ringsrg 13543 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
119, 10syl 14 . . . 4  |-  ( R  e.  CRing  ->  R  e. SRing )
122, 4, 6, 7, 8, 11isunitd 13602 . . 3  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X ( ||r `  (oppr `  R
) )  .1.  )
) )
13 eqid 2193 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2193 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
16 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1713, 14, 15, 16crngoppr 13568 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
18173expa 1205 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
1918eqcomd 2199 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2019an32s 568 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2120eqeq1d 2202 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
2221rexbidva 2491 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
2322pm5.32da 452 . . . . 5  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
2415, 13opprbasg 13571 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2515opprring 13575 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
26 ringsrg 13543 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
279, 25, 263syl 17 . . . . . 6  |-  ( R  e.  CRing  ->  (oppr
`  R )  e. SRing
)
28 eqidd 2194 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
2924, 8, 27, 28dvdsrd 13590 . . . . 5  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) ) )
30 eqidd 2194 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
31 eqidd 2194 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  =  ( .r `  R ) )
3230, 6, 11, 31dvdsrd 13590 . . . . 5  |-  ( R  e.  CRing  ->  ( X  .|| 
.1. 
<->  ( X  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) X )  =  .1.  )
) )
3323, 29, 323bitr4d 220 . . . 4  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
3433anbi2d 464 . . 3  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
3512, 34bitrd 188 . 2  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X  .||  .1.  )
) )
36 pm4.24 395 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
3735, 36bitr4di 198 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696   1rcur 13455  SRingcsrg 13459   Ringcrg 13492   CRingccrg 13493  opprcoppr 13563   ||rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  dvdsunit  13608  cnfldui  14077  znunit  14147
  Copyright terms: Public domain W3C validator