ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit Unicode version

Theorem crngunit 13280
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5  |-  U  =  (Unit `  R )
21a1i 9 . . . 4  |-  ( R  e.  CRing  ->  U  =  (Unit `  R ) )
3 crngunit.2 . . . . 5  |-  .1.  =  ( 1r `  R )
43a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .1.  =  ( 1r `  R ) )
5 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
65a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .||  =  (
||r `  R ) )
7 eqidd 2178 . . . 4  |-  ( R  e.  CRing  ->  (oppr
`  R )  =  (oppr
`  R ) )
8 eqidd 2178 . . . 4  |-  ( R  e.  CRing  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
9 crngring 13191 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
10 ringsrg 13224 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
119, 10syl 14 . . . 4  |-  ( R  e.  CRing  ->  R  e. SRing )
122, 4, 6, 7, 8, 11isunitd 13275 . . 3  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X ( ||r `  (oppr `  R
) )  .1.  )
) )
13 eqid 2177 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2177 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2177 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
16 eqid 2177 . . . . . . . . . . . 12  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1713, 14, 15, 16crngoppr 13244 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
18173expa 1203 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
1918eqcomd 2183 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2019an32s 568 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2120eqeq1d 2186 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
2221rexbidva 2474 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
2322pm5.32da 452 . . . . 5  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
2415, 13opprbasg 13247 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2515opprring 13249 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
26 ringsrg 13224 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
279, 25, 263syl 17 . . . . . 6  |-  ( R  e.  CRing  ->  (oppr
`  R )  e. SRing
)
28 eqidd 2178 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
2924, 8, 27, 28dvdsrd 13263 . . . . 5  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) ) )
30 eqidd 2178 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
31 eqidd 2178 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  =  ( .r `  R ) )
3230, 6, 11, 31dvdsrd 13263 . . . . 5  |-  ( R  e.  CRing  ->  ( X  .|| 
.1. 
<->  ( X  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) X )  =  .1.  )
) )
3323, 29, 323bitr4d 220 . . . 4  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
3433anbi2d 464 . . 3  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
3512, 34bitrd 188 . 2  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X  .||  .1.  )
) )
36 pm4.24 395 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
3735, 36bitr4di 198 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4004   ` cfv 5217  (class class class)co 5875   Basecbs 12462   .rcmulr 12537   1rcur 13142  SRingcsrg 13146   Ringcrg 13179   CRingccrg 13180  opprcoppr 13239   ||rcdsr 13255  Unitcui 13256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-tpos 6246  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-cmn 13090  df-abl 13091  df-mgp 13131  df-ur 13143  df-srg 13147  df-ring 13181  df-cring 13182  df-oppr 13240  df-dvdsr 13258  df-unit 13259
This theorem is referenced by:  dvdsunit  13281
  Copyright terms: Public domain W3C validator