ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit Unicode version

Theorem crngunit 13610
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5  |-  U  =  (Unit `  R )
21a1i 9 . . . 4  |-  ( R  e.  CRing  ->  U  =  (Unit `  R ) )
3 crngunit.2 . . . . 5  |-  .1.  =  ( 1r `  R )
43a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .1.  =  ( 1r `  R ) )
5 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
65a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .||  =  (
||r `  R ) )
7 eqidd 2194 . . . 4  |-  ( R  e.  CRing  ->  (oppr
`  R )  =  (oppr
`  R ) )
8 eqidd 2194 . . . 4  |-  ( R  e.  CRing  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
9 crngring 13507 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
10 ringsrg 13546 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
119, 10syl 14 . . . 4  |-  ( R  e.  CRing  ->  R  e. SRing )
122, 4, 6, 7, 8, 11isunitd 13605 . . 3  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X ( ||r `  (oppr `  R
) )  .1.  )
) )
13 eqid 2193 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2193 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
16 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1713, 14, 15, 16crngoppr 13571 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
18173expa 1205 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
1918eqcomd 2199 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2019an32s 568 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2120eqeq1d 2202 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
2221rexbidva 2491 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
2322pm5.32da 452 . . . . 5  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
2415, 13opprbasg 13574 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2515opprring 13578 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
26 ringsrg 13546 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
279, 25, 263syl 17 . . . . . 6  |-  ( R  e.  CRing  ->  (oppr
`  R )  e. SRing
)
28 eqidd 2194 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
2924, 8, 27, 28dvdsrd 13593 . . . . 5  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) ) )
30 eqidd 2194 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
31 eqidd 2194 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  =  ( .r `  R ) )
3230, 6, 11, 31dvdsrd 13593 . . . . 5  |-  ( R  e.  CRing  ->  ( X  .|| 
.1. 
<->  ( X  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) X )  =  .1.  )
) )
3323, 29, 323bitr4d 220 . . . 4  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
3433anbi2d 464 . . 3  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
3512, 34bitrd 188 . 2  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X  .||  .1.  )
) )
36 pm4.24 395 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
3735, 36bitr4di 198 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   Basecbs 12621   .rcmulr 12699   1rcur 13458  SRingcsrg 13462   Ringcrg 13495   CRingccrg 13496  opprcoppr 13566   ||rcdsr 13585  Unitcui 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-dvdsr 13588  df-unit 13589
This theorem is referenced by:  dvdsunit  13611  cnfldui  14088  znunit  14158
  Copyright terms: Public domain W3C validator