| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crngunit | Unicode version | ||
| Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| crngunit.1 |
|
| crngunit.2 |
|
| crngunit.3 |
|
| Ref | Expression |
|---|---|
| crngunit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngunit.1 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | crngunit.2 |
. . . . 5
| |
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | crngunit.3 |
. . . . 5
| |
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | eqidd 2230 |
. . . 4
| |
| 8 | eqidd 2230 |
. . . 4
| |
| 9 | crngring 13971 |
. . . . 5
| |
| 10 | ringsrg 14010 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 2, 4, 6, 7, 8, 11 | isunitd 14070 |
. . 3
|
| 13 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 14 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 15 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 16 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 17 | 13, 14, 15, 16 | crngoppr 14035 |
. . . . . . . . . . 11
|
| 18 | 17 | 3expa 1227 |
. . . . . . . . . 10
|
| 19 | 18 | eqcomd 2235 |
. . . . . . . . 9
|
| 20 | 19 | an32s 568 |
. . . . . . . 8
|
| 21 | 20 | eqeq1d 2238 |
. . . . . . 7
|
| 22 | 21 | rexbidva 2527 |
. . . . . 6
|
| 23 | 22 | pm5.32da 452 |
. . . . 5
|
| 24 | 15, 13 | opprbasg 14038 |
. . . . . 6
|
| 25 | 15 | opprring 14042 |
. . . . . . 7
|
| 26 | ringsrg 14010 |
. . . . . . 7
| |
| 27 | 9, 25, 26 | 3syl 17 |
. . . . . 6
|
| 28 | eqidd 2230 |
. . . . . 6
| |
| 29 | 24, 8, 27, 28 | dvdsrd 14058 |
. . . . 5
|
| 30 | eqidd 2230 |
. . . . . 6
| |
| 31 | eqidd 2230 |
. . . . . 6
| |
| 32 | 30, 6, 11, 31 | dvdsrd 14058 |
. . . . 5
|
| 33 | 23, 29, 32 | 3bitr4d 220 |
. . . 4
|
| 34 | 33 | anbi2d 464 |
. . 3
|
| 35 | 12, 34 | bitrd 188 |
. 2
|
| 36 | pm4.24 395 |
. 2
| |
| 37 | 35, 36 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-cmn 13823 df-abl 13824 df-mgp 13884 df-ur 13923 df-srg 13927 df-ring 13961 df-cring 13962 df-oppr 14031 df-dvdsr 14052 df-unit 14053 |
| This theorem is referenced by: dvdsunit 14076 cnfldui 14553 znunit 14623 |
| Copyright terms: Public domain | W3C validator |