ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit Unicode version

Theorem crngunit 13873
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5  |-  U  =  (Unit `  R )
21a1i 9 . . . 4  |-  ( R  e.  CRing  ->  U  =  (Unit `  R ) )
3 crngunit.2 . . . . 5  |-  .1.  =  ( 1r `  R )
43a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .1.  =  ( 1r `  R ) )
5 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
65a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .||  =  (
||r `  R ) )
7 eqidd 2206 . . . 4  |-  ( R  e.  CRing  ->  (oppr
`  R )  =  (oppr
`  R ) )
8 eqidd 2206 . . . 4  |-  ( R  e.  CRing  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
9 crngring 13770 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
10 ringsrg 13809 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
119, 10syl 14 . . . 4  |-  ( R  e.  CRing  ->  R  e. SRing )
122, 4, 6, 7, 8, 11isunitd 13868 . . 3  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X ( ||r `  (oppr `  R
) )  .1.  )
) )
13 eqid 2205 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2205 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2205 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
16 eqid 2205 . . . . . . . . . . . 12  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1713, 14, 15, 16crngoppr 13834 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
18173expa 1206 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
1918eqcomd 2211 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2019an32s 568 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2120eqeq1d 2214 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
2221rexbidva 2503 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
2322pm5.32da 452 . . . . 5  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
2415, 13opprbasg 13837 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2515opprring 13841 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
26 ringsrg 13809 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
279, 25, 263syl 17 . . . . . 6  |-  ( R  e.  CRing  ->  (oppr
`  R )  e. SRing
)
28 eqidd 2206 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
2924, 8, 27, 28dvdsrd 13856 . . . . 5  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) ) )
30 eqidd 2206 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
31 eqidd 2206 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  =  ( .r `  R ) )
3230, 6, 11, 31dvdsrd 13856 . . . . 5  |-  ( R  e.  CRing  ->  ( X  .|| 
.1. 
<->  ( X  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) X )  =  .1.  )
) )
3323, 29, 323bitr4d 220 . . . 4  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
3433anbi2d 464 . . 3  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
3512, 34bitrd 188 . 2  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X  .||  .1.  )
) )
36 pm4.24 395 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
3735, 36bitr4di 198 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   Basecbs 12832   .rcmulr 12910   1rcur 13721  SRingcsrg 13725   Ringcrg 13758   CRingccrg 13759  opprcoppr 13829   ||rcdsr 13848  Unitcui 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-cring 13761  df-oppr 13830  df-dvdsr 13851  df-unit 13852
This theorem is referenced by:  dvdsunit  13874  cnfldui  14351  znunit  14421
  Copyright terms: Public domain W3C validator