ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crngunit Unicode version

Theorem crngunit 13743
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 crngunit.1 . . . . 5  |-  U  =  (Unit `  R )
21a1i 9 . . . 4  |-  ( R  e.  CRing  ->  U  =  (Unit `  R ) )
3 crngunit.2 . . . . 5  |-  .1.  =  ( 1r `  R )
43a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .1.  =  ( 1r `  R ) )
5 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
65a1i 9 . . . 4  |-  ( R  e.  CRing  ->  .||  =  (
||r `  R ) )
7 eqidd 2197 . . . 4  |-  ( R  e.  CRing  ->  (oppr
`  R )  =  (oppr
`  R ) )
8 eqidd 2197 . . . 4  |-  ( R  e.  CRing  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
9 crngring 13640 . . . . 5  |-  ( R  e.  CRing  ->  R  e.  Ring )
10 ringsrg 13679 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
119, 10syl 14 . . . 4  |-  ( R  e.  CRing  ->  R  e. SRing )
122, 4, 6, 7, 8, 11isunitd 13738 . . 3  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X ( ||r `  (oppr `  R
) )  .1.  )
) )
13 eqid 2196 . . . . . . . . . . . 12  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2196 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
15 eqid 2196 . . . . . . . . . . . 12  |-  (oppr `  R
)  =  (oppr `  R
)
16 eqid 2196 . . . . . . . . . . . 12  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
1713, 14, 15, 16crngoppr 13704 . . . . . . . . . . 11  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
18173expa 1205 . . . . . . . . . 10  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
1918eqcomd 2202 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2019an32s 568 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
2120eqeq1d 2205 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
2221rexbidva 2494 . . . . . 6  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
2322pm5.32da 452 . . . . 5  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
2415, 13opprbasg 13707 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
2515opprring 13711 . . . . . . 7  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
26 ringsrg 13679 . . . . . . 7  |-  ( (oppr `  R )  e.  Ring  -> 
(oppr `  R )  e. SRing )
279, 25, 263syl 17 . . . . . 6  |-  ( R  e.  CRing  ->  (oppr
`  R )  e. SRing
)
28 eqidd 2197 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) ) )
2924, 8, 27, 28dvdsrd 13726 . . . . 5  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) ) )
30 eqidd 2197 . . . . . 6  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
31 eqidd 2197 . . . . . 6  |-  ( R  e.  CRing  ->  ( .r `  R )  =  ( .r `  R ) )
3230, 6, 11, 31dvdsrd 13726 . . . . 5  |-  ( R  e.  CRing  ->  ( X  .|| 
.1. 
<->  ( X  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) X )  =  .1.  )
) )
3323, 29, 323bitr4d 220 . . . 4  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
3433anbi2d 464 . . 3  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
3512, 34bitrd 188 . 2  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  ( X  .||  .1.  /\  X  .||  .1.  )
) )
36 pm4.24 395 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
3735, 36bitr4di 198 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12703   .rcmulr 12781   1rcur 13591  SRingcsrg 13595   Ringcrg 13628   CRingccrg 13629  opprcoppr 13699   ||rcdsr 13718  Unitcui 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-cring 13631  df-oppr 13700  df-dvdsr 13721  df-unit 13722
This theorem is referenced by:  dvdsunit  13744  cnfldui  14221  znunit  14291
  Copyright terms: Public domain W3C validator