ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbfv12g GIF version

Theorem csbfv12g 5543
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbfv12g (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbfv12g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbiotag 5201 . . 3 (𝐴𝐶𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦))
2 sbcbrg 4052 . . . . 5 (𝐴𝐶 → ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦))
3 csbconstg 3069 . . . . . 6 (𝐴𝐶𝐴 / 𝑥𝑦 = 𝑦)
43breq2d 4010 . . . . 5 (𝐴𝐶 → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
52, 4bitrd 188 . . . 4 (𝐴𝐶 → ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
65iotabidv 5191 . . 3 (𝐴𝐶 → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
71, 6eqtrd 2208 . 2 (𝐴𝐶𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
8 df-fv 5216 . . 3 (𝐹𝐵) = (℩𝑦𝐵𝐹𝑦)
98csbeq2i 3082 . 2 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦)
10 df-fv 5216 . 2 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦)
117, 9, 103eqtr4g 2233 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  [wsbc 2960  csb 3055   class class class wbr 3998  cio 5168  cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216
This theorem is referenced by:  csbfv2g  5544
  Copyright terms: Public domain W3C validator