Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbfv12g | GIF version |
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
csbfv12g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiotag 5181 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦)) | |
2 | sbcbrg 4036 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦)) | |
3 | csbconstg 3059 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 3 | breq2d 3994 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 2, 4 | bitrd 187 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | iotabidv 5174 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
7 | 1, 6 | eqtrd 2198 | . 2 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
8 | df-fv 5196 | . . 3 ⊢ (𝐹‘𝐵) = (℩𝑦𝐵𝐹𝑦) | |
9 | 8 | csbeq2i 3072 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) |
10 | df-fv 5196 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦) | |
11 | 7, 9, 10 | 3eqtr4g 2224 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 [wsbc 2951 ⦋csb 3045 class class class wbr 3982 ℩cio 5151 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: csbfv2g 5523 |
Copyright terms: Public domain | W3C validator |