ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd Unicode version

Theorem fvmptd 5683
Description: Deduction version of fvmpt 5679. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
fvmptd.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fvmptd.3  |-  ( ph  ->  A  e.  D )
fvmptd.4  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
fvmptd  |-  ( ph  ->  ( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
21fveq1d 5601 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
3 fvmptd.3 . . 3  |-  ( ph  ->  A  e.  D )
4 fvmptd.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
53, 4csbied 3148 . . . 4  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
6 fvmptd.4 . . . 4  |-  ( ph  ->  C  e.  V )
75, 6eqeltrd 2284 . . 3  |-  ( ph  ->  [_ A  /  x ]_ B  e.  V
)
8 eqid 2207 . . . 4  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
98fvmpts 5680 . . 3  |-  ( ( A  e.  D  /\  [_ A  /  x ]_ B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  A )  =  [_ A  /  x ]_ B
)
103, 7, 9syl2anc 411 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  B ) `  A )  =  [_ A  /  x ]_ B
)
112, 10, 53eqtrd 2244 1  |-  ( ph  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   [_csb 3101    |-> cmpt 4121   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298
This theorem is referenced by:  fvmptd2  5684  fvmptdv2  5692  rdgivallem  6490  1stinl  7202  2ndinl  7203  1stinr  7204  2ndinr  7205  updjudhcoinlf  7208  updjudhcoinrg  7209  cardcl  7314  caucvgsrlemfv  7939  caucvgsrlemoffval  7944  axcaucvglemval  8045  negiso  9063  infrenegsupex  9750  iseqf1olemfvp  10692  seq3f1olemqsum  10695  ccatval1  11091  ccatval2  11092  infxrnegsupex  11689  climcvg1nlem  11775  isumshft  11916  mulgnngsum  13578  sraval  14314  lmfval  14779  blfvalps  14972  cdivcncfap  15191  peano4nninf  16145  peano3nninf  16146  nninfsellemeq  16153  nninfsellemeqinf  16155
  Copyright terms: Public domain W3C validator