| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptd | Unicode version | ||
| Description: Deduction version of fvmpt 5641. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptd.1 |
|
| fvmptd.2 |
|
| fvmptd.3 |
|
| fvmptd.4 |
|
| Ref | Expression |
|---|---|
| fvmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 |
. . 3
| |
| 2 | 1 | fveq1d 5563 |
. 2
|
| 3 | fvmptd.3 |
. . 3
| |
| 4 | fvmptd.2 |
. . . . 5
| |
| 5 | 3, 4 | csbied 3131 |
. . . 4
|
| 6 | fvmptd.4 |
. . . 4
| |
| 7 | 5, 6 | eqeltrd 2273 |
. . 3
|
| 8 | eqid 2196 |
. . . 4
| |
| 9 | 8 | fvmpts 5642 |
. . 3
|
| 10 | 3, 7, 9 | syl2anc 411 |
. 2
|
| 11 | 2, 10, 5 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fvmptd2 5646 fvmptdv2 5654 rdgivallem 6448 1stinl 7149 2ndinl 7150 1stinr 7151 2ndinr 7152 updjudhcoinlf 7155 updjudhcoinrg 7156 cardcl 7261 caucvgsrlemfv 7877 caucvgsrlemoffval 7882 axcaucvglemval 7983 negiso 9001 infrenegsupex 9687 iseqf1olemfvp 10621 seq3f1olemqsum 10624 infxrnegsupex 11447 climcvg1nlem 11533 isumshft 11674 mulgnngsum 13335 sraval 14071 lmfval 14536 blfvalps 14729 cdivcncfap 14948 peano4nninf 15761 peano3nninf 15762 nninfsellemeq 15769 nninfsellemeqinf 15771 |
| Copyright terms: Public domain | W3C validator |