| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptd | Unicode version | ||
| Description: Deduction version of fvmpt 5656. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptd.1 |
|
| fvmptd.2 |
|
| fvmptd.3 |
|
| fvmptd.4 |
|
| Ref | Expression |
|---|---|
| fvmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 |
. . 3
| |
| 2 | 1 | fveq1d 5578 |
. 2
|
| 3 | fvmptd.3 |
. . 3
| |
| 4 | fvmptd.2 |
. . . . 5
| |
| 5 | 3, 4 | csbied 3140 |
. . . 4
|
| 6 | fvmptd.4 |
. . . 4
| |
| 7 | 5, 6 | eqeltrd 2282 |
. . 3
|
| 8 | eqid 2205 |
. . . 4
| |
| 9 | 8 | fvmpts 5657 |
. . 3
|
| 10 | 3, 7, 9 | syl2anc 411 |
. 2
|
| 11 | 2, 10, 5 | 3eqtrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 |
| This theorem is referenced by: fvmptd2 5661 fvmptdv2 5669 rdgivallem 6467 1stinl 7176 2ndinl 7177 1stinr 7178 2ndinr 7179 updjudhcoinlf 7182 updjudhcoinrg 7183 cardcl 7288 caucvgsrlemfv 7904 caucvgsrlemoffval 7909 axcaucvglemval 8010 negiso 9028 infrenegsupex 9715 iseqf1olemfvp 10655 seq3f1olemqsum 10658 ccatval1 11053 ccatval2 11054 infxrnegsupex 11574 climcvg1nlem 11660 isumshft 11801 mulgnngsum 13463 sraval 14199 lmfval 14664 blfvalps 14857 cdivcncfap 15076 peano4nninf 15943 peano3nninf 15944 nninfsellemeq 15951 nninfsellemeqinf 15953 |
| Copyright terms: Public domain | W3C validator |