ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd Unicode version

Theorem fvmptd 5645
Description: Deduction version of fvmpt 5641. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
fvmptd.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fvmptd.3  |-  ( ph  ->  A  e.  D )
fvmptd.4  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
fvmptd  |-  ( ph  ->  ( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
21fveq1d 5563 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
3 fvmptd.3 . . 3  |-  ( ph  ->  A  e.  D )
4 fvmptd.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
53, 4csbied 3131 . . . 4  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
6 fvmptd.4 . . . 4  |-  ( ph  ->  C  e.  V )
75, 6eqeltrd 2273 . . 3  |-  ( ph  ->  [_ A  /  x ]_ B  e.  V
)
8 eqid 2196 . . . 4  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
98fvmpts 5642 . . 3  |-  ( ( A  e.  D  /\  [_ A  /  x ]_ B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  A )  =  [_ A  /  x ]_ B
)
103, 7, 9syl2anc 411 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  B ) `  A )  =  [_ A  /  x ]_ B
)
112, 10, 53eqtrd 2233 1  |-  ( ph  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   [_csb 3084    |-> cmpt 4095   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267
This theorem is referenced by:  fvmptd2  5646  fvmptdv2  5654  rdgivallem  6448  1stinl  7149  2ndinl  7150  1stinr  7151  2ndinr  7152  updjudhcoinlf  7155  updjudhcoinrg  7156  cardcl  7259  caucvgsrlemfv  7875  caucvgsrlemoffval  7880  axcaucvglemval  7981  negiso  8999  infrenegsupex  9685  iseqf1olemfvp  10619  seq3f1olemqsum  10622  infxrnegsupex  11445  climcvg1nlem  11531  isumshft  11672  mulgnngsum  13333  sraval  14069  lmfval  14512  blfvalps  14705  cdivcncfap  14924  peano4nninf  15737  peano3nninf  15738  nninfsellemeq  15745  nninfsellemeqinf  15747
  Copyright terms: Public domain W3C validator