ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptd Unicode version

Theorem fvmptd 5599
Description: Deduction version of fvmpt 5595. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fvmptd.1  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
fvmptd.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
fvmptd.3  |-  ( ph  ->  A  e.  D )
fvmptd.4  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
fvmptd  |-  ( ph  ->  ( F `  A
)  =  C )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptd
StepHypRef Expression
1 fvmptd.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )
21fveq1d 5519 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
3 fvmptd.3 . . 3  |-  ( ph  ->  A  e.  D )
4 fvmptd.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
53, 4csbied 3105 . . . 4  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
6 fvmptd.4 . . . 4  |-  ( ph  ->  C  e.  V )
75, 6eqeltrd 2254 . . 3  |-  ( ph  ->  [_ A  /  x ]_ B  e.  V
)
8 eqid 2177 . . . 4  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
98fvmpts 5596 . . 3  |-  ( ( A  e.  D  /\  [_ A  /  x ]_ B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  A )  =  [_ A  /  x ]_ B
)
103, 7, 9syl2anc 411 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  B ) `  A )  =  [_ A  /  x ]_ B
)
112, 10, 53eqtrd 2214 1  |-  ( ph  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   [_csb 3059    |-> cmpt 4066   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226
This theorem is referenced by:  fvmptdv2  5607  rdgivallem  6384  1stinl  7075  2ndinl  7076  1stinr  7077  2ndinr  7078  updjudhcoinlf  7081  updjudhcoinrg  7082  cardcl  7182  caucvgsrlemfv  7792  caucvgsrlemoffval  7797  axcaucvglemval  7898  negiso  8914  infrenegsupex  9596  iseqf1olemfvp  10499  seq3f1olemqsum  10502  infxrnegsupex  11273  climcvg1nlem  11359  isumshft  11500  lmfval  13777  blfvalps  13970  cdivcncfap  14172  peano4nninf  14840  peano3nninf  14841  nninfsellemeq  14848  nninfsellemeqinf  14850
  Copyright terms: Public domain W3C validator