Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptd | Unicode version |
Description: Deduction version of fvmpt 5563. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptd.1 | |
fvmptd.2 | |
fvmptd.3 | |
fvmptd.4 |
Ref | Expression |
---|---|
fvmptd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd.1 | . . 3 | |
2 | 1 | fveq1d 5488 | . 2 |
3 | fvmptd.3 | . . 3 | |
4 | fvmptd.2 | . . . . 5 | |
5 | 3, 4 | csbied 3091 | . . . 4 |
6 | fvmptd.4 | . . . 4 | |
7 | 5, 6 | eqeltrd 2243 | . . 3 |
8 | eqid 2165 | . . . 4 | |
9 | 8 | fvmpts 5564 | . . 3 |
10 | 3, 7, 9 | syl2anc 409 | . 2 |
11 | 2, 10, 5 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 csb 3045 cmpt 4043 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: fvmptdv2 5575 rdgivallem 6349 1stinl 7039 2ndinl 7040 1stinr 7041 2ndinr 7042 updjudhcoinlf 7045 updjudhcoinrg 7046 cardcl 7137 caucvgsrlemfv 7732 caucvgsrlemoffval 7737 axcaucvglemval 7838 negiso 8850 infrenegsupex 9532 iseqf1olemfvp 10432 seq3f1olemqsum 10435 infxrnegsupex 11204 climcvg1nlem 11290 isumshft 11431 lmfval 12832 blfvalps 13025 cdivcncfap 13227 peano4nninf 13886 peano3nninf 13887 nninfsellemeq 13894 nninfsellemeqinf 13896 |
Copyright terms: Public domain | W3C validator |