| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptd | Unicode version | ||
| Description: Deduction version of fvmpt 5711. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fvmptd.1 |
|
| fvmptd.2 |
|
| fvmptd.3 |
|
| fvmptd.4 |
|
| Ref | Expression |
|---|---|
| fvmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd.1 |
. . 3
| |
| 2 | 1 | fveq1d 5629 |
. 2
|
| 3 | fvmptd.3 |
. . 3
| |
| 4 | fvmptd.2 |
. . . . 5
| |
| 5 | 3, 4 | csbied 3171 |
. . . 4
|
| 6 | fvmptd.4 |
. . . 4
| |
| 7 | 5, 6 | eqeltrd 2306 |
. . 3
|
| 8 | eqid 2229 |
. . . 4
| |
| 9 | 8 | fvmpts 5712 |
. . 3
|
| 10 | 3, 7, 9 | syl2anc 411 |
. 2
|
| 11 | 2, 10, 5 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: fvmptd2 5716 fvmptdv2 5724 rdgivallem 6527 1stinl 7241 2ndinl 7242 1stinr 7243 2ndinr 7244 updjudhcoinlf 7247 updjudhcoinrg 7248 cardcl 7353 caucvgsrlemfv 7978 caucvgsrlemoffval 7983 axcaucvglemval 8084 negiso 9102 infrenegsupex 9789 iseqf1olemfvp 10732 seq3f1olemqsum 10735 ccatval1 11132 ccatval2 11133 infxrnegsupex 11774 climcvg1nlem 11860 isumshft 12001 mulgnngsum 13664 sraval 14401 lmfval 14867 blfvalps 15059 cdivcncfap 15278 peano4nninf 16372 peano3nninf 16373 nninfsellemeq 16380 nninfsellemeqinf 16382 |
| Copyright terms: Public domain | W3C validator |