| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmptd | Unicode version | ||
| Description: Deduction version of fvmpt 5638. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fvmptd.1 | 
 | 
| fvmptd.2 | 
 | 
| fvmptd.3 | 
 | 
| fvmptd.4 | 
 | 
| Ref | Expression | 
|---|---|
| fvmptd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvmptd.1 | 
. . 3
 | |
| 2 | 1 | fveq1d 5560 | 
. 2
 | 
| 3 | fvmptd.3 | 
. . 3
 | |
| 4 | fvmptd.2 | 
. . . . 5
 | |
| 5 | 3, 4 | csbied 3131 | 
. . . 4
 | 
| 6 | fvmptd.4 | 
. . . 4
 | |
| 7 | 5, 6 | eqeltrd 2273 | 
. . 3
 | 
| 8 | eqid 2196 | 
. . . 4
 | |
| 9 | 8 | fvmpts 5639 | 
. . 3
 | 
| 10 | 3, 7, 9 | syl2anc 411 | 
. 2
 | 
| 11 | 2, 10, 5 | 3eqtrd 2233 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: fvmptd2 5643 fvmptdv2 5651 rdgivallem 6439 1stinl 7140 2ndinl 7141 1stinr 7142 2ndinr 7143 updjudhcoinlf 7146 updjudhcoinrg 7147 cardcl 7248 caucvgsrlemfv 7858 caucvgsrlemoffval 7863 axcaucvglemval 7964 negiso 8982 infrenegsupex 9668 iseqf1olemfvp 10602 seq3f1olemqsum 10605 infxrnegsupex 11428 climcvg1nlem 11514 isumshft 11655 mulgnngsum 13257 sraval 13993 lmfval 14428 blfvalps 14621 cdivcncfap 14840 peano4nninf 15650 peano3nninf 15651 nninfsellemeq 15658 nninfsellemeqinf 15660 | 
| Copyright terms: Public domain | W3C validator |