Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptd | Unicode version |
Description: Deduction version of fvmpt 5573. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fvmptd.1 | |
fvmptd.2 | |
fvmptd.3 | |
fvmptd.4 |
Ref | Expression |
---|---|
fvmptd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd.1 | . . 3 | |
2 | 1 | fveq1d 5498 | . 2 |
3 | fvmptd.3 | . . 3 | |
4 | fvmptd.2 | . . . . 5 | |
5 | 3, 4 | csbied 3095 | . . . 4 |
6 | fvmptd.4 | . . . 4 | |
7 | 5, 6 | eqeltrd 2247 | . . 3 |
8 | eqid 2170 | . . . 4 | |
9 | 8 | fvmpts 5574 | . . 3 |
10 | 3, 7, 9 | syl2anc 409 | . 2 |
11 | 2, 10, 5 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 csb 3049 cmpt 4050 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: fvmptdv2 5585 rdgivallem 6360 1stinl 7051 2ndinl 7052 1stinr 7053 2ndinr 7054 updjudhcoinlf 7057 updjudhcoinrg 7058 cardcl 7158 caucvgsrlemfv 7753 caucvgsrlemoffval 7758 axcaucvglemval 7859 negiso 8871 infrenegsupex 9553 iseqf1olemfvp 10453 seq3f1olemqsum 10456 infxrnegsupex 11226 climcvg1nlem 11312 isumshft 11453 lmfval 12986 blfvalps 13179 cdivcncfap 13381 peano4nninf 14039 peano3nninf 14040 nninfsellemeq 14047 nninfsellemeqinf 14049 |
Copyright terms: Public domain | W3C validator |