ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl Unicode version

Theorem fsumgcl 11551
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fsum.2  |-  ( ph  ->  M  e.  NN )
fsum.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fsum.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsum.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fsumgcl  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
Distinct variable groups:    A, k, n    B, n    C, k    k, F, n    k, G, n   
k, M, n    ph, k, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
2 fsum.3 . . . . . . 7  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
3 f1of 5504 . . . . . . 7  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
42, 3syl 14 . . . . . 6  |-  ( ph  ->  F : ( 1 ... M ) --> A )
54ffvelcdmda 5697 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( F `  n )  e.  A )
6 fsum.1 . . . . . 6  |-  ( k  =  ( F `  n )  ->  B  =  C )
76adantl 277 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 1 ... M
) )  /\  k  =  ( F `  n ) )  ->  B  =  C )
85, 7csbied 3131 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  =  C )
9 fsum.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
109ralrimiva 2570 . . . . . 6  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
1110adantr 276 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
12 nfcsb1v 3117 . . . . . . 7  |-  F/_ k [_ ( F `  n
)  /  k ]_ B
1312nfel1 2350 . . . . . 6  |-  F/ k
[_ ( F `  n )  /  k ]_ B  e.  CC
14 csbeq1a 3093 . . . . . . 7  |-  ( k  =  ( F `  n )  ->  B  =  [_ ( F `  n )  /  k ]_ B )
1514eleq1d 2265 . . . . . 6  |-  ( k  =  ( F `  n )  ->  ( B  e.  CC  <->  [_ ( F `
 n )  / 
k ]_ B  e.  CC ) )
1613, 15rspc 2862 . . . . 5  |-  ( ( F `  n )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( F `  n
)  /  k ]_ B  e.  CC )
)
175, 11, 16sylc 62 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  e.  CC )
188, 17eqeltrrd 2274 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  CC )
191, 18eqeltrd 2273 . 2  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  e.  CC )
2019ralrimiva 2570 1  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   [_csb 3084   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880   NNcn 8990   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-f1o 5265  df-fv 5266
This theorem is referenced by:  fsum3  11552  fprodseq  11748
  Copyright terms: Public domain W3C validator