ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl Unicode version

Theorem fsumgcl 11529
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fsum.2  |-  ( ph  ->  M  e.  NN )
fsum.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fsum.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsum.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fsumgcl  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
Distinct variable groups:    A, k, n    B, n    C, k    k, F, n    k, G, n   
k, M, n    ph, k, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
2 fsum.3 . . . . . . 7  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
3 f1of 5500 . . . . . . 7  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
42, 3syl 14 . . . . . 6  |-  ( ph  ->  F : ( 1 ... M ) --> A )
54ffvelcdmda 5693 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( F `  n )  e.  A )
6 fsum.1 . . . . . 6  |-  ( k  =  ( F `  n )  ->  B  =  C )
76adantl 277 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 1 ... M
) )  /\  k  =  ( F `  n ) )  ->  B  =  C )
85, 7csbied 3127 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  =  C )
9 fsum.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
109ralrimiva 2567 . . . . . 6  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
1110adantr 276 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
12 nfcsb1v 3113 . . . . . . 7  |-  F/_ k [_ ( F `  n
)  /  k ]_ B
1312nfel1 2347 . . . . . 6  |-  F/ k
[_ ( F `  n )  /  k ]_ B  e.  CC
14 csbeq1a 3089 . . . . . . 7  |-  ( k  =  ( F `  n )  ->  B  =  [_ ( F `  n )  /  k ]_ B )
1514eleq1d 2262 . . . . . 6  |-  ( k  =  ( F `  n )  ->  ( B  e.  CC  <->  [_ ( F `
 n )  / 
k ]_ B  e.  CC ) )
1613, 15rspc 2858 . . . . 5  |-  ( ( F `  n )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( F `  n
)  /  k ]_ B  e.  CC )
)
175, 11, 16sylc 62 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  e.  CC )
188, 17eqeltrrd 2271 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  CC )
191, 18eqeltrd 2270 . 2  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  e.  CC )
2019ralrimiva 2567 1  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   [_csb 3080   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   CCcc 7870   1c1 7873   NNcn 8982   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262
This theorem is referenced by:  fsum3  11530  fprodseq  11726
  Copyright terms: Public domain W3C validator