| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumgcl | Unicode version | ||
| Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| fsum.1 |
|
| fsum.2 |
|
| fsum.3 |
|
| fsum.4 |
|
| fsum.5 |
|
| Ref | Expression |
|---|---|
| fsumgcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum.5 |
. . 3
| |
| 2 | fsum.3 |
. . . . . . 7
| |
| 3 | f1of 5522 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | 4 | ffvelcdmda 5715 |
. . . . 5
|
| 6 | fsum.1 |
. . . . . 6
| |
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | 5, 7 | csbied 3140 |
. . . 4
|
| 9 | fsum.4 |
. . . . . . 7
| |
| 10 | 9 | ralrimiva 2579 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | nfcsb1v 3126 |
. . . . . . 7
| |
| 13 | 12 | nfel1 2359 |
. . . . . 6
|
| 14 | csbeq1a 3102 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2274 |
. . . . . 6
|
| 16 | 13, 15 | rspc 2871 |
. . . . 5
|
| 17 | 5, 11, 16 | sylc 62 |
. . . 4
|
| 18 | 8, 17 | eqeltrrd 2283 |
. . 3
|
| 19 | 1, 18 | eqeltrd 2282 |
. 2
|
| 20 | 19 | ralrimiva 2579 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: fsum3 11698 fprodseq 11894 |
| Copyright terms: Public domain | W3C validator |