ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumgcl Unicode version

Theorem fsumgcl 11327
Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fsum.2  |-  ( ph  ->  M  e.  NN )
fsum.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fsum.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsum.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fsumgcl  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
Distinct variable groups:    A, k, n    B, n    C, k    k, F, n    k, G, n   
k, M, n    ph, k, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fsumgcl
StepHypRef Expression
1 fsum.5 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
2 fsum.3 . . . . . . 7  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
3 f1of 5432 . . . . . . 7  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
42, 3syl 14 . . . . . 6  |-  ( ph  ->  F : ( 1 ... M ) --> A )
54ffvelrnda 5620 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( F `  n )  e.  A )
6 fsum.1 . . . . . 6  |-  ( k  =  ( F `  n )  ->  B  =  C )
76adantl 275 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 1 ... M
) )  /\  k  =  ( F `  n ) )  ->  B  =  C )
85, 7csbied 3091 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  =  C )
9 fsum.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
109ralrimiva 2539 . . . . . 6  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
1110adantr 274 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
12 nfcsb1v 3078 . . . . . . 7  |-  F/_ k [_ ( F `  n
)  /  k ]_ B
1312nfel1 2319 . . . . . 6  |-  F/ k
[_ ( F `  n )  /  k ]_ B  e.  CC
14 csbeq1a 3054 . . . . . . 7  |-  ( k  =  ( F `  n )  ->  B  =  [_ ( F `  n )  /  k ]_ B )
1514eleq1d 2235 . . . . . 6  |-  ( k  =  ( F `  n )  ->  ( B  e.  CC  <->  [_ ( F `
 n )  / 
k ]_ B  e.  CC ) )
1613, 15rspc 2824 . . . . 5  |-  ( ( F `  n )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( F `  n
)  /  k ]_ B  e.  CC )
)
175, 11, 16sylc 62 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  e.  CC )
188, 17eqeltrrd 2244 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  CC )
191, 18eqeltrd 2243 . 2  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  e.  CC )
2019ralrimiva 2539 1  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   CCcc 7751   1c1 7754   NNcn 8857   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-fv 5196
This theorem is referenced by:  fsum3  11328  fprodseq  11524
  Copyright terms: Public domain W3C validator