| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumgcl | Unicode version | ||
| Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| fsum.1 |
|
| fsum.2 |
|
| fsum.3 |
|
| fsum.4 |
|
| fsum.5 |
|
| Ref | Expression |
|---|---|
| fsumgcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum.5 |
. . 3
| |
| 2 | fsum.3 |
. . . . . . 7
| |
| 3 | f1of 5572 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | 4 | ffvelcdmda 5770 |
. . . . 5
|
| 6 | fsum.1 |
. . . . . 6
| |
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | 5, 7 | csbied 3171 |
. . . 4
|
| 9 | fsum.4 |
. . . . . . 7
| |
| 10 | 9 | ralrimiva 2603 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | nfcsb1v 3157 |
. . . . . . 7
| |
| 13 | 12 | nfel1 2383 |
. . . . . 6
|
| 14 | csbeq1a 3133 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2298 |
. . . . . 6
|
| 16 | 13, 15 | rspc 2901 |
. . . . 5
|
| 17 | 5, 11, 16 | sylc 62 |
. . . 4
|
| 18 | 8, 17 | eqeltrrd 2307 |
. . 3
|
| 19 | 1, 18 | eqeltrd 2306 |
. 2
|
| 20 | 19 | ralrimiva 2603 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: fsum3 11898 fprodseq 12094 |
| Copyright terms: Public domain | W3C validator |