| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumgcl | Unicode version | ||
| Description: Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.) |
| Ref | Expression |
|---|---|
| fsum.1 |
|
| fsum.2 |
|
| fsum.3 |
|
| fsum.4 |
|
| fsum.5 |
|
| Ref | Expression |
|---|---|
| fsumgcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum.5 |
. . 3
| |
| 2 | fsum.3 |
. . . . . . 7
| |
| 3 | f1of 5504 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | 4 | ffvelcdmda 5697 |
. . . . 5
|
| 6 | fsum.1 |
. . . . . 6
| |
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | 5, 7 | csbied 3131 |
. . . 4
|
| 9 | fsum.4 |
. . . . . . 7
| |
| 10 | 9 | ralrimiva 2570 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | nfcsb1v 3117 |
. . . . . . 7
| |
| 13 | 12 | nfel1 2350 |
. . . . . 6
|
| 14 | csbeq1a 3093 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2265 |
. . . . . 6
|
| 16 | 13, 15 | rspc 2862 |
. . . . 5
|
| 17 | 5, 11, 16 | sylc 62 |
. . . 4
|
| 18 | 8, 17 | eqeltrrd 2274 |
. . 3
|
| 19 | 1, 18 | eqeltrd 2273 |
. 2
|
| 20 | 19 | ralrimiva 2570 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-f1o 5265 df-fv 5266 |
| This theorem is referenced by: fsum3 11552 fprodseq 11748 |
| Copyright terms: Public domain | W3C validator |