ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodeq0 Unicode version

Theorem fprodeq0 11760
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1  |-  Z  =  ( ZZ>= `  M )
fprodeq0.2  |-  ( ph  ->  N  e.  Z )
fprodeq0.3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
fprodeq0.4  |-  ( (
ph  /\  k  =  N )  ->  A  =  0 )
Assertion
Ref Expression
fprodeq0  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  0 )
Distinct variable groups:    k, K    k, M    k, N    k, Z    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fprodeq0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9597 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 277 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
32zred 9439 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  RR )
43ltp1d 8949 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <  ( N  +  1 ) )
5 fzdisj 10118 . . . 4  |-  ( N  <  ( N  + 
1 )  ->  (
( M ... N
)  i^i  ( ( N  +  1 ) ... K ) )  =  (/) )
64, 5syl 14 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( M ... N )  i^i  ( ( N  + 
1 ) ... K
) )  =  (/) )
7 fprodeq0.2 . . . . . . . 8  |-  ( ph  ->  N  e.  Z )
8 eluzel2 9597 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
9 fprodeq0.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
108, 9eleq2s 2288 . . . . . . . 8  |-  ( N  e.  Z  ->  M  e.  ZZ )
117, 10syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
13 eluzelz 9601 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
1413adantl 277 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
1512, 14, 23jca 1179 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ ) )
16 eluzle 9604 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
1716, 9eleq2s 2288 . . . . . . 7  |-  ( N  e.  Z  ->  M  <_  N )
187, 17syl 14 . . . . . 6  |-  ( ph  ->  M  <_  N )
19 eluzle 9604 . . . . . 6  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
2018, 19anim12i 338 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M  <_  N  /\  N  <_  K ) )
21 elfz2 10081 . . . . 5  |-  ( N  e.  ( M ... K )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  N  /\  N  <_  K ) ) )
2215, 20, 21sylanbrc 417 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ( M ... K ) )
23 fzsplit 10117 . . . 4  |-  ( N  e.  ( M ... K )  ->  ( M ... K )  =  ( ( M ... N )  u.  (
( N  +  1 ) ... K ) ) )
2422, 23syl 14 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M ... K )  =  ( ( M ... N
)  u.  ( ( N  +  1 ) ... K ) ) )
2512, 14fzfigd 10502 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M ... K )  e.  Fin )
26 elfzelz 10091 . . . . . 6  |-  ( j  e.  ( M ... K )  ->  j  e.  ZZ )
2726adantl 277 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  j  e.  ZZ )
2812adantr 276 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  M  e.  ZZ )
292adantr 276 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  N  e.  ZZ )
30 fzdcel 10106 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  ( M ... N ) )
3127, 28, 29, 30syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  -> DECID  j  e.  ( M ... N ) )
3231ralrimiva 2567 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  A. j  e.  ( M ... K
)DECID  j  e.  ( M ... N ) )
33 elfzuz 10087 . . . . . 6  |-  ( k  e.  ( M ... K )  ->  k  e.  ( ZZ>= `  M )
)
3433, 9eleqtrrdi 2287 . . . . 5  |-  ( k  e.  ( M ... K )  ->  k  e.  Z )
35 fprodeq0.3 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
3634, 35sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... K ) )  ->  A  e.  CC )
3736adantlr 477 . . 3  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  k  e.  ( M ... K ) )  ->  A  e.  CC )
386, 24, 25, 32, 37fprodsplitdc 11739 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  (
prod_ k  e.  ( M ... N ) A  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A ) )
397, 9eleqtrdi 2286 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
40 elfzuz 10087 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
4140, 9eleqtrrdi 2287 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  Z )
4241, 35sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
4339, 42fprodm1s 11744 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  [_ N  / 
k ]_ A ) )
44 fprodeq0.4 . . . . . . 7  |-  ( (
ph  /\  k  =  N )  ->  A  =  0 )
457, 44csbied 3127 . . . . . 6  |-  ( ph  ->  [_ N  /  k ]_ A  =  0
)
4645oveq2d 5934 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  0 ) )
47 eluzelz 9601 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4839, 47syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
49 peano2zm 9355 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
5048, 49syl 14 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
5111, 50fzfigd 10502 . . . . . . 7  |-  ( ph  ->  ( M ... ( N  -  1 ) )  e.  Fin )
52 elfzuz 10087 . . . . . . . . 9  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
5352, 9eleqtrrdi 2287 . . . . . . . 8  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  Z )
5453, 35sylan2 286 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
5551, 54fprodcl 11750 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( M ... ( N  -  1 ) ) A  e.  CC )
5655mul01d 8412 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  0 )  =  0 )
5743, 46, 563eqtrd 2230 . . . 4  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  0 )
5857adantr 276 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... N
) A  =  0 )
5958oveq1d 5933 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( prod_ k  e.  ( M ... N ) A  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A )  =  ( 0  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A ) )
602peano2zd 9442 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( N  +  1 )  e.  ZZ )
6160, 14fzfigd 10502 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  +  1 ) ... K )  e. 
Fin )
629peano2uzs 9649 . . . . . . . . 9  |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
637, 62syl 14 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  Z )
64 elfzuz 10087 . . . . . . . 8  |-  ( k  e.  ( ( N  +  1 ) ... K )  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) )
659uztrn2 9610 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
6663, 64, 65syl2an 289 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( N  + 
1 ) ... K
) )  ->  k  e.  Z )
6766adantrl 478 . . . . . 6  |-  ( (
ph  /\  ( K  e.  ( ZZ>= `  N )  /\  k  e.  (
( N  +  1 ) ... K ) ) )  ->  k  e.  Z )
6867, 35syldan 282 . . . . 5  |-  ( (
ph  /\  ( K  e.  ( ZZ>= `  N )  /\  k  e.  (
( N  +  1 ) ... K ) ) )  ->  A  e.  CC )
6968anassrs 400 . . . 4  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ( N  + 
1 ) ... K
) )  ->  A  e.  CC )
7061, 69fprodcl 11750 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( ( N  + 
1 ) ... K
) A  e.  CC )
7170mul02d 8411 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 0  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A )  =  0 )
7238, 59, 713eqtrd 2230 1  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164   [_csb 3080    u. cun 3151    i^i cin 3152   (/)c0 3446   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator