ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodeq0 Unicode version

Theorem fprodeq0 11558
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1  |-  Z  =  ( ZZ>= `  M )
fprodeq0.2  |-  ( ph  ->  N  e.  Z )
fprodeq0.3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
fprodeq0.4  |-  ( (
ph  /\  k  =  N )  ->  A  =  0 )
Assertion
Ref Expression
fprodeq0  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  0 )
Distinct variable groups:    k, K    k, M    k, N    k, Z    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fprodeq0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9471 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 275 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
32zred 9313 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  RR )
43ltp1d 8825 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <  ( N  +  1 ) )
5 fzdisj 9987 . . . 4  |-  ( N  <  ( N  + 
1 )  ->  (
( M ... N
)  i^i  ( ( N  +  1 ) ... K ) )  =  (/) )
64, 5syl 14 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( M ... N )  i^i  ( ( N  + 
1 ) ... K
) )  =  (/) )
7 fprodeq0.2 . . . . . . . 8  |-  ( ph  ->  N  e.  Z )
8 eluzel2 9471 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
9 fprodeq0.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
108, 9eleq2s 2261 . . . . . . . 8  |-  ( N  e.  Z  ->  M  e.  ZZ )
117, 10syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
13 eluzelz 9475 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
1413adantl 275 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
1512, 14, 23jca 1167 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ ) )
16 eluzle 9478 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
1716, 9eleq2s 2261 . . . . . . 7  |-  ( N  e.  Z  ->  M  <_  N )
187, 17syl 14 . . . . . 6  |-  ( ph  ->  M  <_  N )
19 eluzle 9478 . . . . . 6  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
2018, 19anim12i 336 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M  <_  N  /\  N  <_  K ) )
21 elfz2 9951 . . . . 5  |-  ( N  e.  ( M ... K )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  N  /\  N  <_  K ) ) )
2215, 20, 21sylanbrc 414 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ( M ... K ) )
23 fzsplit 9986 . . . 4  |-  ( N  e.  ( M ... K )  ->  ( M ... K )  =  ( ( M ... N )  u.  (
( N  +  1 ) ... K ) ) )
2422, 23syl 14 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M ... K )  =  ( ( M ... N
)  u.  ( ( N  +  1 ) ... K ) ) )
2512, 14fzfigd 10366 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M ... K )  e.  Fin )
26 elfzelz 9960 . . . . . 6  |-  ( j  e.  ( M ... K )  ->  j  e.  ZZ )
2726adantl 275 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  j  e.  ZZ )
2812adantr 274 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  M  e.  ZZ )
292adantr 274 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  N  e.  ZZ )
30 fzdcel 9975 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  ( M ... N ) )
3127, 28, 29, 30syl3anc 1228 . . . 4  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  -> DECID  j  e.  ( M ... N ) )
3231ralrimiva 2539 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  A. j  e.  ( M ... K
)DECID  j  e.  ( M ... N ) )
33 elfzuz 9956 . . . . . 6  |-  ( k  e.  ( M ... K )  ->  k  e.  ( ZZ>= `  M )
)
3433, 9eleqtrrdi 2260 . . . . 5  |-  ( k  e.  ( M ... K )  ->  k  e.  Z )
35 fprodeq0.3 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
3634, 35sylan2 284 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... K ) )  ->  A  e.  CC )
3736adantlr 469 . . 3  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  k  e.  ( M ... K ) )  ->  A  e.  CC )
386, 24, 25, 32, 37fprodsplitdc 11537 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  (
prod_ k  e.  ( M ... N ) A  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A ) )
397, 9eleqtrdi 2259 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
40 elfzuz 9956 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
4140, 9eleqtrrdi 2260 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  Z )
4241, 35sylan2 284 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
4339, 42fprodm1s 11542 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  [_ N  / 
k ]_ A ) )
44 fprodeq0.4 . . . . . . 7  |-  ( (
ph  /\  k  =  N )  ->  A  =  0 )
457, 44csbied 3091 . . . . . 6  |-  ( ph  ->  [_ N  /  k ]_ A  =  0
)
4645oveq2d 5858 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  0 ) )
47 eluzelz 9475 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4839, 47syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
49 peano2zm 9229 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
5048, 49syl 14 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
5111, 50fzfigd 10366 . . . . . . 7  |-  ( ph  ->  ( M ... ( N  -  1 ) )  e.  Fin )
52 elfzuz 9956 . . . . . . . . 9  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
5352, 9eleqtrrdi 2260 . . . . . . . 8  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  Z )
5453, 35sylan2 284 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
5551, 54fprodcl 11548 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( M ... ( N  -  1 ) ) A  e.  CC )
5655mul01d 8291 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  0 )  =  0 )
5743, 46, 563eqtrd 2202 . . . 4  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  0 )
5857adantr 274 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... N
) A  =  0 )
5958oveq1d 5857 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( prod_ k  e.  ( M ... N ) A  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A )  =  ( 0  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A ) )
602peano2zd 9316 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( N  +  1 )  e.  ZZ )
6160, 14fzfigd 10366 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  +  1 ) ... K )  e. 
Fin )
629peano2uzs 9522 . . . . . . . . 9  |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
637, 62syl 14 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  Z )
64 elfzuz 9956 . . . . . . . 8  |-  ( k  e.  ( ( N  +  1 ) ... K )  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) )
659uztrn2 9483 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
6663, 64, 65syl2an 287 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( N  + 
1 ) ... K
) )  ->  k  e.  Z )
6766adantrl 470 . . . . . 6  |-  ( (
ph  /\  ( K  e.  ( ZZ>= `  N )  /\  k  e.  (
( N  +  1 ) ... K ) ) )  ->  k  e.  Z )
6867, 35syldan 280 . . . . 5  |-  ( (
ph  /\  ( K  e.  ( ZZ>= `  N )  /\  k  e.  (
( N  +  1 ) ... K ) ) )  ->  A  e.  CC )
6968anassrs 398 . . . 4  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ( N  + 
1 ) ... K
) )  ->  A  e.  CC )
7061, 69fprodcl 11548 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( ( N  + 
1 ) ... K
) A  e.  CC )
7170mul02d 8290 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 0  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A )  =  0 )
7238, 59, 713eqtrd 2202 1  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   [_csb 3045    u. cun 3114    i^i cin 3115   (/)c0 3409   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator