| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodeq0 | Unicode version | ||
| Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprodeq0.1 |
|
| fprodeq0.2 |
|
| fprodeq0.3 |
|
| fprodeq0.4 |
|
| Ref | Expression |
|---|---|
| fprodeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9727 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | 2 | zred 9569 |
. . . . 5
|
| 4 | 3 | ltp1d 9077 |
. . . 4
|
| 5 | fzdisj 10248 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fprodeq0.2 |
. . . . . . . 8
| |
| 8 | eluzel2 9727 |
. . . . . . . . 9
| |
| 9 | fprodeq0.1 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eleq2s 2324 |
. . . . . . . 8
|
| 11 | 7, 10 | syl 14 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | eluzelz 9731 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 12, 14, 2 | 3jca 1201 |
. . . . 5
|
| 16 | eluzle 9734 |
. . . . . . . 8
| |
| 17 | 16, 9 | eleq2s 2324 |
. . . . . . 7
|
| 18 | 7, 17 | syl 14 |
. . . . . 6
|
| 19 | eluzle 9734 |
. . . . . 6
| |
| 20 | 18, 19 | anim12i 338 |
. . . . 5
|
| 21 | elfz2 10211 |
. . . . 5
| |
| 22 | 15, 20, 21 | sylanbrc 417 |
. . . 4
|
| 23 | fzsplit 10247 |
. . . 4
| |
| 24 | 22, 23 | syl 14 |
. . 3
|
| 25 | 12, 14 | fzfigd 10653 |
. . 3
|
| 26 | elfzelz 10221 |
. . . . . 6
| |
| 27 | 26 | adantl 277 |
. . . . 5
|
| 28 | 12 | adantr 276 |
. . . . 5
|
| 29 | 2 | adantr 276 |
. . . . 5
|
| 30 | fzdcel 10236 |
. . . . 5
| |
| 31 | 27, 28, 29, 30 | syl3anc 1271 |
. . . 4
|
| 32 | 31 | ralrimiva 2603 |
. . 3
|
| 33 | elfzuz 10217 |
. . . . . 6
| |
| 34 | 33, 9 | eleqtrrdi 2323 |
. . . . 5
|
| 35 | fprodeq0.3 |
. . . . 5
| |
| 36 | 34, 35 | sylan2 286 |
. . . 4
|
| 37 | 36 | adantlr 477 |
. . 3
|
| 38 | 6, 24, 25, 32, 37 | fprodsplitdc 12107 |
. 2
|
| 39 | 7, 9 | eleqtrdi 2322 |
. . . . . 6
|
| 40 | elfzuz 10217 |
. . . . . . . 8
| |
| 41 | 40, 9 | eleqtrrdi 2323 |
. . . . . . 7
|
| 42 | 41, 35 | sylan2 286 |
. . . . . 6
|
| 43 | 39, 42 | fprodm1s 12112 |
. . . . 5
|
| 44 | fprodeq0.4 |
. . . . . . 7
| |
| 45 | 7, 44 | csbied 3171 |
. . . . . 6
|
| 46 | 45 | oveq2d 6017 |
. . . . 5
|
| 47 | eluzelz 9731 |
. . . . . . . . . 10
| |
| 48 | 39, 47 | syl 14 |
. . . . . . . . 9
|
| 49 | peano2zm 9484 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 11, 50 | fzfigd 10653 |
. . . . . . 7
|
| 52 | elfzuz 10217 |
. . . . . . . . 9
| |
| 53 | 52, 9 | eleqtrrdi 2323 |
. . . . . . . 8
|
| 54 | 53, 35 | sylan2 286 |
. . . . . . 7
|
| 55 | 51, 54 | fprodcl 12118 |
. . . . . 6
|
| 56 | 55 | mul01d 8539 |
. . . . 5
|
| 57 | 43, 46, 56 | 3eqtrd 2266 |
. . . 4
|
| 58 | 57 | adantr 276 |
. . 3
|
| 59 | 58 | oveq1d 6016 |
. 2
|
| 60 | 2 | peano2zd 9572 |
. . . . 5
|
| 61 | 60, 14 | fzfigd 10653 |
. . . 4
|
| 62 | 9 | peano2uzs 9779 |
. . . . . . . . 9
|
| 63 | 7, 62 | syl 14 |
. . . . . . . 8
|
| 64 | elfzuz 10217 |
. . . . . . . 8
| |
| 65 | 9 | uztrn2 9740 |
. . . . . . . 8
|
| 66 | 63, 64, 65 | syl2an 289 |
. . . . . . 7
|
| 67 | 66 | adantrl 478 |
. . . . . 6
|
| 68 | 67, 35 | syldan 282 |
. . . . 5
|
| 69 | 68 | anassrs 400 |
. . . 4
|
| 70 | 61, 69 | fprodcl 12118 |
. . 3
|
| 71 | 70 | mul02d 8538 |
. 2
|
| 72 | 38, 59, 71 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-proddc 12062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |