| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodeq0 | Unicode version | ||
| Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprodeq0.1 |
|
| fprodeq0.2 |
|
| fprodeq0.3 |
|
| fprodeq0.4 |
|
| Ref | Expression |
|---|---|
| fprodeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9623 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | 2 | zred 9465 |
. . . . 5
|
| 4 | 3 | ltp1d 8974 |
. . . 4
|
| 5 | fzdisj 10144 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | fprodeq0.2 |
. . . . . . . 8
| |
| 8 | eluzel2 9623 |
. . . . . . . . 9
| |
| 9 | fprodeq0.1 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eleq2s 2291 |
. . . . . . . 8
|
| 11 | 7, 10 | syl 14 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | eluzelz 9627 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 12, 14, 2 | 3jca 1179 |
. . . . 5
|
| 16 | eluzle 9630 |
. . . . . . . 8
| |
| 17 | 16, 9 | eleq2s 2291 |
. . . . . . 7
|
| 18 | 7, 17 | syl 14 |
. . . . . 6
|
| 19 | eluzle 9630 |
. . . . . 6
| |
| 20 | 18, 19 | anim12i 338 |
. . . . 5
|
| 21 | elfz2 10107 |
. . . . 5
| |
| 22 | 15, 20, 21 | sylanbrc 417 |
. . . 4
|
| 23 | fzsplit 10143 |
. . . 4
| |
| 24 | 22, 23 | syl 14 |
. . 3
|
| 25 | 12, 14 | fzfigd 10540 |
. . 3
|
| 26 | elfzelz 10117 |
. . . . . 6
| |
| 27 | 26 | adantl 277 |
. . . . 5
|
| 28 | 12 | adantr 276 |
. . . . 5
|
| 29 | 2 | adantr 276 |
. . . . 5
|
| 30 | fzdcel 10132 |
. . . . 5
| |
| 31 | 27, 28, 29, 30 | syl3anc 1249 |
. . . 4
|
| 32 | 31 | ralrimiva 2570 |
. . 3
|
| 33 | elfzuz 10113 |
. . . . . 6
| |
| 34 | 33, 9 | eleqtrrdi 2290 |
. . . . 5
|
| 35 | fprodeq0.3 |
. . . . 5
| |
| 36 | 34, 35 | sylan2 286 |
. . . 4
|
| 37 | 36 | adantlr 477 |
. . 3
|
| 38 | 6, 24, 25, 32, 37 | fprodsplitdc 11778 |
. 2
|
| 39 | 7, 9 | eleqtrdi 2289 |
. . . . . 6
|
| 40 | elfzuz 10113 |
. . . . . . . 8
| |
| 41 | 40, 9 | eleqtrrdi 2290 |
. . . . . . 7
|
| 42 | 41, 35 | sylan2 286 |
. . . . . 6
|
| 43 | 39, 42 | fprodm1s 11783 |
. . . . 5
|
| 44 | fprodeq0.4 |
. . . . . . 7
| |
| 45 | 7, 44 | csbied 3131 |
. . . . . 6
|
| 46 | 45 | oveq2d 5941 |
. . . . 5
|
| 47 | eluzelz 9627 |
. . . . . . . . . 10
| |
| 48 | 39, 47 | syl 14 |
. . . . . . . . 9
|
| 49 | peano2zm 9381 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl 14 |
. . . . . . . 8
|
| 51 | 11, 50 | fzfigd 10540 |
. . . . . . 7
|
| 52 | elfzuz 10113 |
. . . . . . . . 9
| |
| 53 | 52, 9 | eleqtrrdi 2290 |
. . . . . . . 8
|
| 54 | 53, 35 | sylan2 286 |
. . . . . . 7
|
| 55 | 51, 54 | fprodcl 11789 |
. . . . . 6
|
| 56 | 55 | mul01d 8436 |
. . . . 5
|
| 57 | 43, 46, 56 | 3eqtrd 2233 |
. . . 4
|
| 58 | 57 | adantr 276 |
. . 3
|
| 59 | 58 | oveq1d 5940 |
. 2
|
| 60 | 2 | peano2zd 9468 |
. . . . 5
|
| 61 | 60, 14 | fzfigd 10540 |
. . . 4
|
| 62 | 9 | peano2uzs 9675 |
. . . . . . . . 9
|
| 63 | 7, 62 | syl 14 |
. . . . . . . 8
|
| 64 | elfzuz 10113 |
. . . . . . . 8
| |
| 65 | 9 | uztrn2 9636 |
. . . . . . . 8
|
| 66 | 63, 64, 65 | syl2an 289 |
. . . . . . 7
|
| 67 | 66 | adantrl 478 |
. . . . . 6
|
| 68 | 67, 35 | syldan 282 |
. . . . 5
|
| 69 | 68 | anassrs 400 |
. . . 4
|
| 70 | 61, 69 | fprodcl 11789 |
. . 3
|
| 71 | 70 | mul02d 8435 |
. 2
|
| 72 | 38, 59, 71 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-proddc 11733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |