ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodeq0 Unicode version

Theorem fprodeq0 11782
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1  |-  Z  =  ( ZZ>= `  M )
fprodeq0.2  |-  ( ph  ->  N  e.  Z )
fprodeq0.3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
fprodeq0.4  |-  ( (
ph  /\  k  =  N )  ->  A  =  0 )
Assertion
Ref Expression
fprodeq0  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  0 )
Distinct variable groups:    k, K    k, M    k, N    k, Z    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fprodeq0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9606 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  e.  ZZ )
21adantl 277 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ZZ )
32zred 9448 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  RR )
43ltp1d 8957 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  <  ( N  +  1 ) )
5 fzdisj 10127 . . . 4  |-  ( N  <  ( N  + 
1 )  ->  (
( M ... N
)  i^i  ( ( N  +  1 ) ... K ) )  =  (/) )
64, 5syl 14 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( M ... N )  i^i  ( ( N  + 
1 ) ... K
) )  =  (/) )
7 fprodeq0.2 . . . . . . . 8  |-  ( ph  ->  N  e.  Z )
8 eluzel2 9606 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
9 fprodeq0.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
108, 9eleq2s 2291 . . . . . . . 8  |-  ( N  e.  Z  ->  M  e.  ZZ )
117, 10syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  M  e.  ZZ )
13 eluzelz 9610 . . . . . . 7  |-  ( K  e.  ( ZZ>= `  N
)  ->  K  e.  ZZ )
1413adantl 277 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  K  e.  ZZ )
1512, 14, 23jca 1179 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ ) )
16 eluzle 9613 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
1716, 9eleq2s 2291 . . . . . . 7  |-  ( N  e.  Z  ->  M  <_  N )
187, 17syl 14 . . . . . 6  |-  ( ph  ->  M  <_  N )
19 eluzle 9613 . . . . . 6  |-  ( K  e.  ( ZZ>= `  N
)  ->  N  <_  K )
2018, 19anim12i 338 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M  <_  N  /\  N  <_  K ) )
21 elfz2 10090 . . . . 5  |-  ( N  e.  ( M ... K )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  N  /\  N  <_  K ) ) )
2215, 20, 21sylanbrc 417 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  N  e.  ( M ... K ) )
23 fzsplit 10126 . . . 4  |-  ( N  e.  ( M ... K )  ->  ( M ... K )  =  ( ( M ... N )  u.  (
( N  +  1 ) ... K ) ) )
2422, 23syl 14 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M ... K )  =  ( ( M ... N
)  u.  ( ( N  +  1 ) ... K ) ) )
2512, 14fzfigd 10523 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( M ... K )  e.  Fin )
26 elfzelz 10100 . . . . . 6  |-  ( j  e.  ( M ... K )  ->  j  e.  ZZ )
2726adantl 277 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  j  e.  ZZ )
2812adantr 276 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  M  e.  ZZ )
292adantr 276 . . . . 5  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  ->  N  e.  ZZ )
30 fzdcel 10115 . . . . 5  |-  ( ( j  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  ( M ... N ) )
3127, 28, 29, 30syl3anc 1249 . . . 4  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  j  e.  ( M ... K ) )  -> DECID  j  e.  ( M ... N ) )
3231ralrimiva 2570 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  A. j  e.  ( M ... K
)DECID  j  e.  ( M ... N ) )
33 elfzuz 10096 . . . . . 6  |-  ( k  e.  ( M ... K )  ->  k  e.  ( ZZ>= `  M )
)
3433, 9eleqtrrdi 2290 . . . . 5  |-  ( k  e.  ( M ... K )  ->  k  e.  Z )
35 fprodeq0.3 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
3634, 35sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... K ) )  ->  A  e.  CC )
3736adantlr 477 . . 3  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  k  e.  ( M ... K ) )  ->  A  e.  CC )
386, 24, 25, 32, 37fprodsplitdc 11761 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  (
prod_ k  e.  ( M ... N ) A  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A ) )
397, 9eleqtrdi 2289 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
40 elfzuz 10096 . . . . . . . 8  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
4140, 9eleqtrrdi 2290 . . . . . . 7  |-  ( k  e.  ( M ... N )  ->  k  e.  Z )
4241, 35sylan2 286 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
4339, 42fprodm1s 11766 . . . . 5  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  [_ N  / 
k ]_ A ) )
44 fprodeq0.4 . . . . . . 7  |-  ( (
ph  /\  k  =  N )  ->  A  =  0 )
457, 44csbied 3131 . . . . . 6  |-  ( ph  ->  [_ N  /  k ]_ A  =  0
)
4645oveq2d 5938 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  [_ N  /  k ]_ A
)  =  ( prod_
k  e.  ( M ... ( N  - 
1 ) ) A  x.  0 ) )
47 eluzelz 9610 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
4839, 47syl 14 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
49 peano2zm 9364 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
5048, 49syl 14 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
5111, 50fzfigd 10523 . . . . . . 7  |-  ( ph  ->  ( M ... ( N  -  1 ) )  e.  Fin )
52 elfzuz 10096 . . . . . . . . 9  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
5352, 9eleqtrrdi 2290 . . . . . . . 8  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  Z )
5453, 35sylan2 286 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  A  e.  CC )
5551, 54fprodcl 11772 . . . . . 6  |-  ( ph  ->  prod_ k  e.  ( M ... ( N  -  1 ) ) A  e.  CC )
5655mul01d 8419 . . . . 5  |-  ( ph  ->  ( prod_ k  e.  ( M ... ( N  -  1 ) ) A  x.  0 )  =  0 )
5743, 46, 563eqtrd 2233 . . . 4  |-  ( ph  ->  prod_ k  e.  ( M ... N ) A  =  0 )
5857adantr 276 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... N
) A  =  0 )
5958oveq1d 5937 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( prod_ k  e.  ( M ... N ) A  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A )  =  ( 0  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A ) )
602peano2zd 9451 . . . . 5  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( N  +  1 )  e.  ZZ )
6160, 14fzfigd 10523 . . . 4  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( ( N  +  1 ) ... K )  e. 
Fin )
629peano2uzs 9658 . . . . . . . . 9  |-  ( N  e.  Z  ->  ( N  +  1 )  e.  Z )
637, 62syl 14 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  Z )
64 elfzuz 10096 . . . . . . . 8  |-  ( k  e.  ( ( N  +  1 ) ... K )  ->  k  e.  ( ZZ>= `  ( N  +  1 ) ) )
659uztrn2 9619 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
6663, 64, 65syl2an 289 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( N  + 
1 ) ... K
) )  ->  k  e.  Z )
6766adantrl 478 . . . . . 6  |-  ( (
ph  /\  ( K  e.  ( ZZ>= `  N )  /\  k  e.  (
( N  +  1 ) ... K ) ) )  ->  k  e.  Z )
6867, 35syldan 282 . . . . 5  |-  ( (
ph  /\  ( K  e.  ( ZZ>= `  N )  /\  k  e.  (
( N  +  1 ) ... K ) ) )  ->  A  e.  CC )
6968anassrs 400 . . . 4  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  N )
)  /\  k  e.  ( ( N  + 
1 ) ... K
) )  ->  A  e.  CC )
7061, 69fprodcl 11772 . . 3  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( ( N  + 
1 ) ... K
) A  e.  CC )
7170mul02d 8418 . 2  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  ( 0  x.  prod_ k  e.  ( ( N  +  1 ) ... K ) A )  =  0 )
7238, 59, 713eqtrd 2233 1  |-  ( (
ph  /\  K  e.  ( ZZ>= `  N )
)  ->  prod_ k  e.  ( M ... K
) A  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   [_csb 3084    u. cun 3155    i^i cin 3156   (/)c0 3450   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator