Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsumshftm | Unicode version |
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsumrev.1 | |
fsumrev.2 | |
fsumrev.3 | |
fsumrev.4 | |
fsumshftm.5 |
Ref | Expression |
---|---|
fsumshftm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2299 | . . 3 | |
2 | nfcsb1v 3064 | . . 3 | |
3 | csbeq1a 3040 | . . 3 | |
4 | 1, 2, 3 | cbvsumi 11241 | . 2 |
5 | fsumrev.1 | . . . . 5 | |
6 | 5 | znegcld 9271 | . . . 4 |
7 | fsumrev.2 | . . . 4 | |
8 | fsumrev.3 | . . . 4 | |
9 | fsumrev.4 | . . . . . 6 | |
10 | 9 | ralrimiva 2530 | . . . . 5 |
11 | 2 | nfel1 2310 | . . . . . 6 |
12 | 3 | eleq1d 2226 | . . . . . 6 |
13 | 11, 12 | rspc 2810 | . . . . 5 |
14 | 10, 13 | mpan9 279 | . . . 4 |
15 | csbeq1 3034 | . . . 4 | |
16 | 6, 7, 8, 14, 15 | fsumshft 11323 | . . 3 |
17 | 7 | zcnd 9270 | . . . . . 6 |
18 | 5 | zcnd 9270 | . . . . . 6 |
19 | 17, 18 | negsubd 8175 | . . . . 5 |
20 | 8 | zcnd 9270 | . . . . . 6 |
21 | 20, 18 | negsubd 8175 | . . . . 5 |
22 | 19, 21 | oveq12d 5836 | . . . 4 |
23 | 22 | sumeq1d 11245 | . . 3 |
24 | elfzelz 9910 | . . . . . . . 8 | |
25 | 24 | zcnd 9270 | . . . . . . 7 |
26 | subneg 8107 | . . . . . . 7 | |
27 | 25, 18, 26 | syl2anr 288 | . . . . . 6 |
28 | 27 | csbeq1d 3038 | . . . . 5 |
29 | 24 | adantl 275 | . . . . . . 7 |
30 | 5 | adantr 274 | . . . . . . 7 |
31 | 29, 30 | zaddcld 9273 | . . . . . 6 |
32 | fsumshftm.5 | . . . . . . 7 | |
33 | 32 | adantl 275 | . . . . . 6 |
34 | 31, 33 | csbied 3077 | . . . . 5 |
35 | 28, 34 | eqtrd 2190 | . . . 4 |
36 | 35 | sumeq2dv 11247 | . . 3 |
37 | 16, 23, 36 | 3eqtrd 2194 | . 2 |
38 | 4, 37 | syl5eq 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 csb 3031 (class class class)co 5818 cc 7713 caddc 7718 cmin 8029 cneg 8030 cz 9150 cfz 9894 csu 11232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 ax-caucvg 7835 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-isom 5176 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-frec 6332 df-1o 6357 df-oadd 6361 df-er 6473 df-en 6679 df-dom 6680 df-fin 6681 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 df-uz 9423 df-q 9511 df-rp 9543 df-fz 9895 df-fzo 10024 df-seqfrec 10327 df-exp 10401 df-ihash 10632 df-cj 10724 df-re 10725 df-im 10726 df-rsqrt 10880 df-abs 10881 df-clim 11158 df-sumdc 11233 |
This theorem is referenced by: telfsumo 11345 fsumparts 11349 arisum 11377 geo2sum 11393 |
Copyright terms: Public domain | W3C validator |