ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumshftm Unicode version

Theorem fsumshftm 11408
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumshftm.5  |-  ( j  =  ( k  +  K )  ->  A  =  B )
Assertion
Ref Expression
fsumshftm  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K )
) B )
Distinct variable groups:    A, k    B, j    j, k, K    j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumshftm
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nfcv 2312 . . 3  |-  F/_ m A
2 nfcsb1v 3082 . . 3  |-  F/_ j [_ m  /  j ]_ A
3 csbeq1a 3058 . . 3  |-  ( j  =  m  ->  A  =  [_ m  /  j ]_ A )
41, 2, 3cbvsumi 11325 . 2  |-  sum_ j  e.  ( M ... N
) A  =  sum_ m  e.  ( M ... N ) [_ m  /  j ]_ A
5 fsumrev.1 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
65znegcld 9336 . . . 4  |-  ( ph  -> 
-u K  e.  ZZ )
7 fsumrev.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 fsumrev.3 . . . 4  |-  ( ph  ->  N  e.  ZZ )
9 fsumrev.4 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
109ralrimiva 2543 . . . . 5  |-  ( ph  ->  A. j  e.  ( M ... N ) A  e.  CC )
112nfel1 2323 . . . . . 6  |-  F/ j
[_ m  /  j ]_ A  e.  CC
123eleq1d 2239 . . . . . 6  |-  ( j  =  m  ->  ( A  e.  CC  <->  [_ m  / 
j ]_ A  e.  CC ) )
1311, 12rspc 2828 . . . . 5  |-  ( m  e.  ( M ... N )  ->  ( A. j  e.  ( M ... N ) A  e.  CC  ->  [_ m  /  j ]_ A  e.  CC ) )
1410, 13mpan9 279 . . . 4  |-  ( (
ph  /\  m  e.  ( M ... N ) )  ->  [_ m  / 
j ]_ A  e.  CC )
15 csbeq1 3052 . . . 4  |-  ( m  =  ( k  -  -u K )  ->  [_ m  /  j ]_ A  =  [_ ( k  -  -u K )  /  j ]_ A )
166, 7, 8, 14, 15fsumshft 11407 . . 3  |-  ( ph  -> 
sum_ m  e.  ( M ... N ) [_ m  /  j ]_ A  =  sum_ k  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) [_ ( k  -  -u K )  / 
j ]_ A )
177zcnd 9335 . . . . . 6  |-  ( ph  ->  M  e.  CC )
185zcnd 9335 . . . . . 6  |-  ( ph  ->  K  e.  CC )
1917, 18negsubd 8236 . . . . 5  |-  ( ph  ->  ( M  +  -u K )  =  ( M  -  K ) )
208zcnd 9335 . . . . . 6  |-  ( ph  ->  N  e.  CC )
2120, 18negsubd 8236 . . . . 5  |-  ( ph  ->  ( N  +  -u K )  =  ( N  -  K ) )
2219, 21oveq12d 5871 . . . 4  |-  ( ph  ->  ( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K ) ) )
2322sumeq1d 11329 . . 3  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) [_ ( k  -  -u K )  / 
j ]_ A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K
) ) [_ (
k  -  -u K
)  /  j ]_ A )
24 elfzelz 9981 . . . . . . . 8  |-  ( k  e.  ( ( M  -  K ) ... ( N  -  K
) )  ->  k  e.  ZZ )
2524zcnd 9335 . . . . . . 7  |-  ( k  e.  ( ( M  -  K ) ... ( N  -  K
) )  ->  k  e.  CC )
26 subneg 8168 . . . . . . 7  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( k  -  -u K
)  =  ( k  +  K ) )
2725, 18, 26syl2anr 288 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  (
k  -  -u K
)  =  ( k  +  K ) )
2827csbeq1d 3056 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  [_ (
k  -  -u K
)  /  j ]_ A  =  [_ ( k  +  K )  / 
j ]_ A )
2924adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  k  e.  ZZ )
305adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  K  e.  ZZ )
3129, 30zaddcld 9338 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  (
k  +  K )  e.  ZZ )
32 fsumshftm.5 . . . . . . 7  |-  ( j  =  ( k  +  K )  ->  A  =  B )
3332adantl 275 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  /\  j  =  ( k  +  K ) )  ->  A  =  B )
3431, 33csbied 3095 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  [_ (
k  +  K )  /  j ]_ A  =  B )
3528, 34eqtrd 2203 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  [_ (
k  -  -u K
)  /  j ]_ A  =  B )
3635sumeq2dv 11331 . . 3  |-  ( ph  -> 
sum_ k  e.  ( ( M  -  K
) ... ( N  -  K ) ) [_ ( k  -  -u K
)  /  j ]_ A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K )
) B )
3716, 23, 363eqtrd 2207 . 2  |-  ( ph  -> 
sum_ m  e.  ( M ... N ) [_ m  /  j ]_ A  =  sum_ k  e.  ( ( M  -  K
) ... ( N  -  K ) ) B )
384, 37eqtrid 2215 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   [_csb 3049  (class class class)co 5853   CCcc 7772    + caddc 7777    - cmin 8090   -ucneg 8091   ZZcz 9212   ...cfz 9965   sum_csu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  telfsumo  11429  fsumparts  11433  arisum  11461  geo2sum  11477
  Copyright terms: Public domain W3C validator