ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumshftm Unicode version

Theorem fsumshftm 11386
Description: Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumrev.1  |-  ( ph  ->  K  e.  ZZ )
fsumrev.2  |-  ( ph  ->  M  e.  ZZ )
fsumrev.3  |-  ( ph  ->  N  e.  ZZ )
fsumrev.4  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
fsumshftm.5  |-  ( j  =  ( k  +  K )  ->  A  =  B )
Assertion
Ref Expression
fsumshftm  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K )
) B )
Distinct variable groups:    A, k    B, j    j, k, K    j, M, k    j, N, k    ph, j, k
Allowed substitution hints:    A( j)    B( k)

Proof of Theorem fsumshftm
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nfcv 2308 . . 3  |-  F/_ m A
2 nfcsb1v 3078 . . 3  |-  F/_ j [_ m  /  j ]_ A
3 csbeq1a 3054 . . 3  |-  ( j  =  m  ->  A  =  [_ m  /  j ]_ A )
41, 2, 3cbvsumi 11303 . 2  |-  sum_ j  e.  ( M ... N
) A  =  sum_ m  e.  ( M ... N ) [_ m  /  j ]_ A
5 fsumrev.1 . . . . 5  |-  ( ph  ->  K  e.  ZZ )
65znegcld 9315 . . . 4  |-  ( ph  -> 
-u K  e.  ZZ )
7 fsumrev.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
8 fsumrev.3 . . . 4  |-  ( ph  ->  N  e.  ZZ )
9 fsumrev.4 . . . . . 6  |-  ( (
ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )
109ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. j  e.  ( M ... N ) A  e.  CC )
112nfel1 2319 . . . . . 6  |-  F/ j
[_ m  /  j ]_ A  e.  CC
123eleq1d 2235 . . . . . 6  |-  ( j  =  m  ->  ( A  e.  CC  <->  [_ m  / 
j ]_ A  e.  CC ) )
1311, 12rspc 2824 . . . . 5  |-  ( m  e.  ( M ... N )  ->  ( A. j  e.  ( M ... N ) A  e.  CC  ->  [_ m  /  j ]_ A  e.  CC ) )
1410, 13mpan9 279 . . . 4  |-  ( (
ph  /\  m  e.  ( M ... N ) )  ->  [_ m  / 
j ]_ A  e.  CC )
15 csbeq1 3048 . . . 4  |-  ( m  =  ( k  -  -u K )  ->  [_ m  /  j ]_ A  =  [_ ( k  -  -u K )  /  j ]_ A )
166, 7, 8, 14, 15fsumshft 11385 . . 3  |-  ( ph  -> 
sum_ m  e.  ( M ... N ) [_ m  /  j ]_ A  =  sum_ k  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) [_ ( k  -  -u K )  / 
j ]_ A )
177zcnd 9314 . . . . . 6  |-  ( ph  ->  M  e.  CC )
185zcnd 9314 . . . . . 6  |-  ( ph  ->  K  e.  CC )
1917, 18negsubd 8215 . . . . 5  |-  ( ph  ->  ( M  +  -u K )  =  ( M  -  K ) )
208zcnd 9314 . . . . . 6  |-  ( ph  ->  N  e.  CC )
2120, 18negsubd 8215 . . . . 5  |-  ( ph  ->  ( N  +  -u K )  =  ( N  -  K ) )
2219, 21oveq12d 5860 . . . 4  |-  ( ph  ->  ( ( M  +  -u K ) ... ( N  +  -u K ) )  =  ( ( M  -  K ) ... ( N  -  K ) ) )
2322sumeq1d 11307 . . 3  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  -u K ) ... ( N  +  -u K ) ) [_ ( k  -  -u K )  / 
j ]_ A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K
) ) [_ (
k  -  -u K
)  /  j ]_ A )
24 elfzelz 9960 . . . . . . . 8  |-  ( k  e.  ( ( M  -  K ) ... ( N  -  K
) )  ->  k  e.  ZZ )
2524zcnd 9314 . . . . . . 7  |-  ( k  e.  ( ( M  -  K ) ... ( N  -  K
) )  ->  k  e.  CC )
26 subneg 8147 . . . . . . 7  |-  ( ( k  e.  CC  /\  K  e.  CC )  ->  ( k  -  -u K
)  =  ( k  +  K ) )
2725, 18, 26syl2anr 288 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  (
k  -  -u K
)  =  ( k  +  K ) )
2827csbeq1d 3052 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  [_ (
k  -  -u K
)  /  j ]_ A  =  [_ ( k  +  K )  / 
j ]_ A )
2924adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  k  e.  ZZ )
305adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  K  e.  ZZ )
3129, 30zaddcld 9317 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  (
k  +  K )  e.  ZZ )
32 fsumshftm.5 . . . . . . 7  |-  ( j  =  ( k  +  K )  ->  A  =  B )
3332adantl 275 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  /\  j  =  ( k  +  K ) )  ->  A  =  B )
3431, 33csbied 3091 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  [_ (
k  +  K )  /  j ]_ A  =  B )
3528, 34eqtrd 2198 . . . 4  |-  ( (
ph  /\  k  e.  ( ( M  -  K ) ... ( N  -  K )
) )  ->  [_ (
k  -  -u K
)  /  j ]_ A  =  B )
3635sumeq2dv 11309 . . 3  |-  ( ph  -> 
sum_ k  e.  ( ( M  -  K
) ... ( N  -  K ) ) [_ ( k  -  -u K
)  /  j ]_ A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K )
) B )
3716, 23, 363eqtrd 2202 . 2  |-  ( ph  -> 
sum_ m  e.  ( M ... N ) [_ m  /  j ]_ A  =  sum_ k  e.  ( ( M  -  K
) ... ( N  -  K ) ) B )
384, 37syl5eq 2211 1  |-  ( ph  -> 
sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K )
) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045  (class class class)co 5842   CCcc 7751    + caddc 7756    - cmin 8069   -ucneg 8070   ZZcz 9191   ...cfz 9944   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  telfsumo  11407  fsumparts  11411  arisum  11439  geo2sum  11455
  Copyright terms: Public domain W3C validator