| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemu1st | Unicode version | ||
| Description: Lemma for ctiunct 12926. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som |
|
| ctiunct.sdc |
|
| ctiunct.f |
|
| ctiunct.tom |
|
| ctiunct.tdc |
|
| ctiunct.g |
|
| ctiunct.j |
|
| ctiunct.u |
|
| ctiunctlem.n |
|
| Ref | Expression |
|---|---|
| ctiunctlemu1st |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunctlem.n |
. . . 4
| |
| 2 | 2fveq3 5604 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2276 |
. . . . . 6
|
| 4 | 2fveq3 5604 |
. . . . . . 7
| |
| 5 | 2 | fveq2d 5603 |
. . . . . . . 8
|
| 6 | 5 | csbeq1d 3108 |
. . . . . . 7
|
| 7 | 4, 6 | eleq12d 2278 |
. . . . . 6
|
| 8 | 3, 7 | anbi12d 473 |
. . . . 5
|
| 9 | ctiunct.u |
. . . . 5
| |
| 10 | 8, 9 | elrab2 2939 |
. . . 4
|
| 11 | 1, 10 | sylib 122 |
. . 3
|
| 12 | 11 | simprd 114 |
. 2
|
| 13 | 12 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: ctiunctlemf 12924 |
| Copyright terms: Public domain | W3C validator |