| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemu1st | GIF version | ||
| Description: Lemma for ctiunct 12657. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som | ⊢ (𝜑 → 𝑆 ⊆ ω) |
| ctiunct.sdc | ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
| ctiunct.f | ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
| ctiunct.tom | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
| ctiunct.tdc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
| ctiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
| ctiunct.j | ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
| ctiunct.u | ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
| ctiunctlem.n | ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ctiunctlemu1st | ⊢ (𝜑 → (1st ‘(𝐽‘𝑁)) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunctlem.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑈) | |
| 2 | 2fveq3 5563 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → (1st ‘(𝐽‘𝑧)) = (1st ‘(𝐽‘𝑁))) | |
| 3 | 2 | eleq1d 2265 | . . . . . 6 ⊢ (𝑧 = 𝑁 → ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽‘𝑁)) ∈ 𝑆)) |
| 4 | 2fveq3 5563 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → (2nd ‘(𝐽‘𝑧)) = (2nd ‘(𝐽‘𝑁))) | |
| 5 | 2 | fveq2d 5562 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝐹‘(1st ‘(𝐽‘𝑧))) = (𝐹‘(1st ‘(𝐽‘𝑁)))) |
| 6 | 5 | csbeq1d 3091 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
| 7 | 4, 6 | eleq12d 2267 | . . . . . 6 ⊢ (𝑧 = 𝑁 → ((2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇)) |
| 8 | 3, 7 | anbi12d 473 | . . . . 5 ⊢ (𝑧 = 𝑁 → (((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇) ↔ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
| 9 | ctiunct.u | . . . . 5 ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | |
| 10 | 8, 9 | elrab2 2923 | . . . 4 ⊢ (𝑁 ∈ 𝑈 ↔ (𝑁 ∈ ω ∧ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
| 11 | 1, 10 | sylib 122 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ω ∧ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
| 12 | 11 | simprd 114 | . 2 ⊢ (𝜑 → ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇)) |
| 13 | 12 | simpld 112 | 1 ⊢ (𝜑 → (1st ‘(𝐽‘𝑁)) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ⦋csb 3084 ⊆ wss 3157 ωcom 4626 × cxp 4661 –onto→wfo 5256 –1-1-onto→wf1o 5257 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 |
| This theorem is referenced by: ctiunctlemf 12655 |
| Copyright terms: Public domain | W3C validator |