ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt GIF version

Theorem dfmpt 5662
Description: Alternate definition for the maps-to notation df-mpt 4045 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
dfmpt.1 𝐵 ∈ V
Assertion
Ref Expression
dfmpt (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}

Proof of Theorem dfmpt
StepHypRef Expression
1 dfmpt3 5310 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
2 vex 2729 . . . . 5 𝑥 ∈ V
3 dfmpt.1 . . . . 5 𝐵 ∈ V
42, 3xpsn 5661 . . . 4 ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}
54a1i 9 . . 3 (𝑥𝐴 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩})
65iuneq2i 3884 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
71, 6eqtri 2186 1 (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  cop 3579   ciun 3866  cmpt 4043   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  fnasrn  5663  dfmpo  6191
  Copyright terms: Public domain W3C validator