| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmpt | GIF version | ||
| Description: Alternate definition for the maps-to notation df-mpt 4097 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| dfmpt.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpt3 5383 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
| 2 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | dfmpt.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | xpsn 5741 | . . . 4 ⊢ ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉} |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × {𝐵}) = {〈𝑥, 𝐵〉}) |
| 6 | 5 | iuneq2i 3935 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| 7 | 1, 6 | eqtri 2217 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {〈𝑥, 𝐵〉} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 ∪ ciun 3917 ↦ cmpt 4095 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: fnasrn 5743 dfmpo 6290 |
| Copyright terms: Public domain | W3C validator |