![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfmpt | GIF version |
Description: Alternate definition for the maps-to notation df-mpt 4067 (although it requires that 𝐵 be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
dfmpt.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfmpt | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfmpt3 5339 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) | |
2 | vex 2741 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | dfmpt.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | xpsn 5693 | . . . 4 ⊢ ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩} |
5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × {𝐵}) = {⟨𝑥, 𝐵⟩}) |
6 | 5 | iuneq2i 3905 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × {𝐵}) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
7 | 1, 6 | eqtri 2198 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ 𝑥 ∈ 𝐴 {⟨𝑥, 𝐵⟩} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2738 {csn 3593 ⟨cop 3596 ∪ ciun 3887 ↦ cmpt 4065 × cxp 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2740 df-sbc 2964 df-csb 3059 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 |
This theorem is referenced by: fnasrn 5695 dfmpo 6224 |
Copyright terms: Public domain | W3C validator |