ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrn Unicode version

Theorem fnasrn 5740
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
fnasrn  |-  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. )

Proof of Theorem fnasrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfmpt.1 . . 3  |-  B  e. 
_V
21dfmpt 5739 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
3 eqid 2196 . . . . 5  |-  ( x  e.  A  |->  <. x ,  B >. )  =  ( x  e.  A  |->  <.
x ,  B >. )
43rnmpt 4914 . . . 4  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
5 velsn 3639 . . . . . 6  |-  ( y  e.  { <. x ,  B >. }  <->  y  =  <. x ,  B >. )
65rexbii 2504 . . . . 5  |-  ( E. x  e.  A  y  e.  { <. x ,  B >. }  <->  E. x  e.  A  y  =  <. x ,  B >. )
76abbii 2312 . . . 4  |-  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
84, 7eqtr4i 2220 . . 3  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }
9 df-iun 3918 . . 3  |-  U_ x  e.  A  { <. x ,  B >. }  =  {
y  |  E. x  e.  A  y  e.  {
<. x ,  B >. } }
108, 9eqtr4i 2220 . 2  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  U_ x  e.  A  { <. x ,  B >. }
112, 10eqtr4i 2220 1  |-  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   {csn 3622   <.cop 3625   U_ciun 3916    |-> cmpt 4094   ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  idref  5803
  Copyright terms: Public domain W3C validator