ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnasrn Unicode version

Theorem fnasrn 5663
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt.1  |-  B  e. 
_V
Assertion
Ref Expression
fnasrn  |-  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. )

Proof of Theorem fnasrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfmpt.1 . . 3  |-  B  e. 
_V
21dfmpt 5662 . 2  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. }
3 eqid 2165 . . . . 5  |-  ( x  e.  A  |->  <. x ,  B >. )  =  ( x  e.  A  |->  <.
x ,  B >. )
43rnmpt 4852 . . . 4  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
5 velsn 3593 . . . . . 6  |-  ( y  e.  { <. x ,  B >. }  <->  y  =  <. x ,  B >. )
65rexbii 2473 . . . . 5  |-  ( E. x  e.  A  y  e.  { <. x ,  B >. }  <->  E. x  e.  A  y  =  <. x ,  B >. )
76abbii 2282 . . . 4  |-  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }  =  { y  |  E. x  e.  A  y  =  <. x ,  B >. }
84, 7eqtr4i 2189 . . 3  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  { y  |  E. x  e.  A  y  e.  { <. x ,  B >. } }
9 df-iun 3868 . . 3  |-  U_ x  e.  A  { <. x ,  B >. }  =  {
y  |  E. x  e.  A  y  e.  {
<. x ,  B >. } }
108, 9eqtr4i 2189 . 2  |-  ran  (
x  e.  A  |->  <.
x ,  B >. )  =  U_ x  e.  A  { <. x ,  B >. }
112, 10eqtr4i 2189 1  |-  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   _Vcvv 2726   {csn 3576   <.cop 3579   U_ciun 3866    |-> cmpt 4043   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  idref  5725
  Copyright terms: Public domain W3C validator