![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrel4v | GIF version |
Description: A relation can be expressed as the set of ordered pairs in it. (Contributed by Mario Carneiro, 16-Aug-2015.) |
Ref | Expression |
---|---|
dfrel4v | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 4915 | . 2 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
2 | eqcom 2097 | . 2 ⊢ (◡◡𝑅 = 𝑅 ↔ 𝑅 = ◡◡𝑅) | |
3 | cnvcnv3 4914 | . . 3 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} | |
4 | 3 | eqeq2i 2105 | . 2 ⊢ (𝑅 = ◡◡𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
5 | 1, 2, 4 | 3bitri 205 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1296 class class class wbr 3867 {copab 3920 ◡ccnv 4466 Rel wrel 4472 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-xp 4473 df-rel 4474 df-cnv 4475 |
This theorem is referenced by: dffn5im 5385 |
Copyright terms: Public domain | W3C validator |