ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrnf Unicode version

Theorem dfrnf 4938
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1  |-  F/_ x A
dfrnf.2  |-  F/_ y A
Assertion
Ref Expression
dfrnf  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem dfrnf
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4884 . 2  |-  ran  A  =  { w  |  E. v  v A w }
2 nfcv 2350 . . . . 5  |-  F/_ x
v
3 dfrnf.1 . . . . 5  |-  F/_ x A
4 nfcv 2350 . . . . 5  |-  F/_ x w
52, 3, 4nfbr 4106 . . . 4  |-  F/ x  v A w
6 nfv 1552 . . . 4  |-  F/ v  x A w
7 breq1 4062 . . . 4  |-  ( v  =  x  ->  (
v A w  <->  x A w ) )
85, 6, 7cbvex 1780 . . 3  |-  ( E. v  v A w  <->  E. x  x A w )
98abbii 2323 . 2  |-  { w  |  E. v  v A w }  =  {
w  |  E. x  x A w }
10 nfcv 2350 . . . . 5  |-  F/_ y
x
11 dfrnf.2 . . . . 5  |-  F/_ y A
12 nfcv 2350 . . . . 5  |-  F/_ y
w
1310, 11, 12nfbr 4106 . . . 4  |-  F/ y  x A w
1413nfex 1661 . . 3  |-  F/ y E. x  x A w
15 nfv 1552 . . 3  |-  F/ w E. x  x A
y
16 breq2 4063 . . . 4  |-  ( w  =  y  ->  (
x A w  <->  x A
y ) )
1716exbidv 1849 . . 3  |-  ( w  =  y  ->  ( E. x  x A w 
<->  E. x  x A y ) )
1814, 15, 17cbvab 2331 . 2  |-  { w  |  E. x  x A w }  =  {
y  |  E. x  x A y }
191, 9, 183eqtri 2232 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516   {cab 2193   F/_wnfc 2337   class class class wbr 4059   ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  rnopab  4944
  Copyright terms: Public domain W3C validator