ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrnf Unicode version

Theorem dfrnf 4845
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1  |-  F/_ x A
dfrnf.2  |-  F/_ y A
Assertion
Ref Expression
dfrnf  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem dfrnf
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4792 . 2  |-  ran  A  =  { w  |  E. v  v A w }
2 nfcv 2308 . . . . 5  |-  F/_ x
v
3 dfrnf.1 . . . . 5  |-  F/_ x A
4 nfcv 2308 . . . . 5  |-  F/_ x w
52, 3, 4nfbr 4028 . . . 4  |-  F/ x  v A w
6 nfv 1516 . . . 4  |-  F/ v  x A w
7 breq1 3985 . . . 4  |-  ( v  =  x  ->  (
v A w  <->  x A w ) )
85, 6, 7cbvex 1744 . . 3  |-  ( E. v  v A w  <->  E. x  x A w )
98abbii 2282 . 2  |-  { w  |  E. v  v A w }  =  {
w  |  E. x  x A w }
10 nfcv 2308 . . . . 5  |-  F/_ y
x
11 dfrnf.2 . . . . 5  |-  F/_ y A
12 nfcv 2308 . . . . 5  |-  F/_ y
w
1310, 11, 12nfbr 4028 . . . 4  |-  F/ y  x A w
1413nfex 1625 . . 3  |-  F/ y E. x  x A w
15 nfv 1516 . . 3  |-  F/ w E. x  x A
y
16 breq2 3986 . . . 4  |-  ( w  =  y  ->  (
x A w  <->  x A
y ) )
1716exbidv 1813 . . 3  |-  ( w  =  y  ->  ( E. x  x A w 
<->  E. x  x A y ) )
1814, 15, 17cbvab 2290 . 2  |-  { w  |  E. x  x A w }  =  {
y  |  E. x  x A y }
191, 9, 183eqtri 2190 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480   {cab 2151   F/_wnfc 2295   class class class wbr 3982   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  rnopab  4851
  Copyright terms: Public domain W3C validator