ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrnf Unicode version

Theorem dfrnf 4852
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1  |-  F/_ x A
dfrnf.2  |-  F/_ y A
Assertion
Ref Expression
dfrnf  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem dfrnf
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4799 . 2  |-  ran  A  =  { w  |  E. v  v A w }
2 nfcv 2312 . . . . 5  |-  F/_ x
v
3 dfrnf.1 . . . . 5  |-  F/_ x A
4 nfcv 2312 . . . . 5  |-  F/_ x w
52, 3, 4nfbr 4035 . . . 4  |-  F/ x  v A w
6 nfv 1521 . . . 4  |-  F/ v  x A w
7 breq1 3992 . . . 4  |-  ( v  =  x  ->  (
v A w  <->  x A w ) )
85, 6, 7cbvex 1749 . . 3  |-  ( E. v  v A w  <->  E. x  x A w )
98abbii 2286 . 2  |-  { w  |  E. v  v A w }  =  {
w  |  E. x  x A w }
10 nfcv 2312 . . . . 5  |-  F/_ y
x
11 dfrnf.2 . . . . 5  |-  F/_ y A
12 nfcv 2312 . . . . 5  |-  F/_ y
w
1310, 11, 12nfbr 4035 . . . 4  |-  F/ y  x A w
1413nfex 1630 . . 3  |-  F/ y E. x  x A w
15 nfv 1521 . . 3  |-  F/ w E. x  x A
y
16 breq2 3993 . . . 4  |-  ( w  =  y  ->  (
x A w  <->  x A
y ) )
1716exbidv 1818 . . 3  |-  ( w  =  y  ->  ( E. x  x A w 
<->  E. x  x A y ) )
1814, 15, 17cbvab 2294 . 2  |-  { w  |  E. x  x A w }  =  {
y  |  E. x  x A y }
191, 9, 183eqtri 2195 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1348   E.wex 1485   {cab 2156   F/_wnfc 2299   class class class wbr 3989   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  rnopab  4858
  Copyright terms: Public domain W3C validator