ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrnf Unicode version

Theorem dfrnf 4919
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1  |-  F/_ x A
dfrnf.2  |-  F/_ y A
Assertion
Ref Expression
dfrnf  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem dfrnf
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4866 . 2  |-  ran  A  =  { w  |  E. v  v A w }
2 nfcv 2348 . . . . 5  |-  F/_ x
v
3 dfrnf.1 . . . . 5  |-  F/_ x A
4 nfcv 2348 . . . . 5  |-  F/_ x w
52, 3, 4nfbr 4090 . . . 4  |-  F/ x  v A w
6 nfv 1551 . . . 4  |-  F/ v  x A w
7 breq1 4047 . . . 4  |-  ( v  =  x  ->  (
v A w  <->  x A w ) )
85, 6, 7cbvex 1779 . . 3  |-  ( E. v  v A w  <->  E. x  x A w )
98abbii 2321 . 2  |-  { w  |  E. v  v A w }  =  {
w  |  E. x  x A w }
10 nfcv 2348 . . . . 5  |-  F/_ y
x
11 dfrnf.2 . . . . 5  |-  F/_ y A
12 nfcv 2348 . . . . 5  |-  F/_ y
w
1310, 11, 12nfbr 4090 . . . 4  |-  F/ y  x A w
1413nfex 1660 . . 3  |-  F/ y E. x  x A w
15 nfv 1551 . . 3  |-  F/ w E. x  x A
y
16 breq2 4048 . . . 4  |-  ( w  =  y  ->  (
x A w  <->  x A
y ) )
1716exbidv 1848 . . 3  |-  ( w  =  y  ->  ( E. x  x A w 
<->  E. x  x A y ) )
1814, 15, 17cbvab 2329 . 2  |-  { w  |  E. x  x A w }  =  {
y  |  E. x  x A y }
191, 9, 183eqtri 2230 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1515   {cab 2191   F/_wnfc 2335   class class class wbr 4044   ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  rnopab  4925
  Copyright terms: Public domain W3C validator