ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn2 Unicode version

Theorem elrn2 4846
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.)
Hypothesis
Ref Expression
elrn.1  |-  A  e. 
_V
Assertion
Ref Expression
elrn2  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem elrn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elrn.1 . 2  |-  A  e. 
_V
2 opeq2 3759 . . . 4  |-  ( y  =  A  ->  <. x ,  y >.  =  <. x ,  A >. )
32eleq1d 2235 . . 3  |-  ( y  =  A  ->  ( <. x ,  y >.  e.  B  <->  <. x ,  A >.  e.  B ) )
43exbidv 1813 . 2  |-  ( y  =  A  ->  ( E. x <. x ,  y
>.  e.  B  <->  E. x <. x ,  A >.  e.  B ) )
5 dfrn3 4793 . 2  |-  ran  B  =  { y  |  E. x <. x ,  y
>.  e.  B }
61, 4, 5elab2 2874 1  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   <.cop 3579   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  elrn  4847  dmrnssfld  4867  rniun  5014  rnxpid  5038  ssrnres  5046  relssdmrn  5124
  Copyright terms: Public domain W3C validator