ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn2 Unicode version

Theorem elrn2 4966
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.)
Hypothesis
Ref Expression
elrn.1  |-  A  e. 
_V
Assertion
Ref Expression
elrn2  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem elrn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elrn.1 . 2  |-  A  e. 
_V
2 opeq2 3858 . . . 4  |-  ( y  =  A  ->  <. x ,  y >.  =  <. x ,  A >. )
32eleq1d 2298 . . 3  |-  ( y  =  A  ->  ( <. x ,  y >.  e.  B  <->  <. x ,  A >.  e.  B ) )
43exbidv 1871 . 2  |-  ( y  =  A  ->  ( E. x <. x ,  y
>.  e.  B  <->  E. x <. x ,  A >.  e.  B ) )
5 dfrn3 4911 . 2  |-  ran  B  =  { y  |  E. x <. x ,  y
>.  e.  B }
61, 4, 5elab2 2951 1  |-  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  elrn  4967  dmrnssfld  4987  rniun  5139  rnxpid  5163  ssrnres  5171  relssdmrn  5249
  Copyright terms: Public domain W3C validator