ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrnf GIF version

Theorem dfrnf 4964
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1 𝑥𝐴
dfrnf.2 𝑦𝐴
Assertion
Ref Expression
dfrnf ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfrnf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4909 . 2 ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤}
2 nfcv 2372 . . . . 5 𝑥𝑣
3 dfrnf.1 . . . . 5 𝑥𝐴
4 nfcv 2372 . . . . 5 𝑥𝑤
52, 3, 4nfbr 4129 . . . 4 𝑥 𝑣𝐴𝑤
6 nfv 1574 . . . 4 𝑣 𝑥𝐴𝑤
7 breq1 4085 . . . 4 (𝑣 = 𝑥 → (𝑣𝐴𝑤𝑥𝐴𝑤))
85, 6, 7cbvex 1802 . . 3 (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤)
98abbii 2345 . 2 {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤}
10 nfcv 2372 . . . . 5 𝑦𝑥
11 dfrnf.2 . . . . 5 𝑦𝐴
12 nfcv 2372 . . . . 5 𝑦𝑤
1310, 11, 12nfbr 4129 . . . 4 𝑦 𝑥𝐴𝑤
1413nfex 1683 . . 3 𝑦𝑥 𝑥𝐴𝑤
15 nfv 1574 . . 3 𝑤𝑥 𝑥𝐴𝑦
16 breq2 4086 . . . 4 (𝑤 = 𝑦 → (𝑥𝐴𝑤𝑥𝐴𝑦))
1716exbidv 1871 . . 3 (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦))
1814, 15, 17cbvab 2353 . 2 {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
191, 9, 183eqtri 2254 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wex 1538  {cab 2215  wnfc 2359   class class class wbr 4082  ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  rnopab  4970
  Copyright terms: Public domain W3C validator