| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrnf | GIF version | ||
| Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 4909 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
| 2 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
| 3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 5 | 2, 3, 4 | nfbr 4129 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
| 6 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
| 7 | breq1 4085 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
| 8 | 5, 6, 7 | cbvex 1802 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
| 9 | 8 | abbii 2345 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
| 10 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
| 11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 12 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 13 | 10, 11, 12 | nfbr 4129 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
| 14 | 13 | nfex 1683 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
| 15 | nfv 1574 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
| 16 | breq2 4086 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
| 17 | 16 | exbidv 1871 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
| 18 | 14, 15, 17 | cbvab 2353 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 19 | 1, 9, 18 | 3eqtri 2254 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃wex 1538 {cab 2215 Ⅎwnfc 2359 class class class wbr 4082 ran crn 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: rnopab 4970 |
| Copyright terms: Public domain | W3C validator |