Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfrnf | GIF version |
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 4789 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
2 | nfcv 2306 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2306 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 4025 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
6 | nfv 1515 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
7 | breq1 3982 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
8 | 5, 6, 7 | cbvex 1743 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
9 | 8 | abbii 2280 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
10 | nfcv 2306 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
12 | nfcv 2306 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
13 | 10, 11, 12 | nfbr 4025 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
14 | 13 | nfex 1624 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
15 | nfv 1515 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
16 | breq2 3983 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
17 | 16 | exbidv 1812 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
18 | 14, 15, 17 | cbvab 2288 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
19 | 1, 9, 18 | 3eqtri 2189 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1342 ∃wex 1479 {cab 2150 Ⅎwnfc 2293 class class class wbr 3979 ran crn 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-br 3980 df-opab 4041 df-cnv 4609 df-dm 4611 df-rn 4612 |
This theorem is referenced by: rnopab 4848 |
Copyright terms: Public domain | W3C validator |