ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrnf GIF version

Theorem dfrnf 4870
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1 𝑥𝐴
dfrnf.2 𝑦𝐴
Assertion
Ref Expression
dfrnf ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfrnf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 4817 . 2 ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤}
2 nfcv 2319 . . . . 5 𝑥𝑣
3 dfrnf.1 . . . . 5 𝑥𝐴
4 nfcv 2319 . . . . 5 𝑥𝑤
52, 3, 4nfbr 4051 . . . 4 𝑥 𝑣𝐴𝑤
6 nfv 1528 . . . 4 𝑣 𝑥𝐴𝑤
7 breq1 4008 . . . 4 (𝑣 = 𝑥 → (𝑣𝐴𝑤𝑥𝐴𝑤))
85, 6, 7cbvex 1756 . . 3 (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤)
98abbii 2293 . 2 {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤}
10 nfcv 2319 . . . . 5 𝑦𝑥
11 dfrnf.2 . . . . 5 𝑦𝐴
12 nfcv 2319 . . . . 5 𝑦𝑤
1310, 11, 12nfbr 4051 . . . 4 𝑦 𝑥𝐴𝑤
1413nfex 1637 . . 3 𝑦𝑥 𝑥𝐴𝑤
15 nfv 1528 . . 3 𝑤𝑥 𝑥𝐴𝑦
16 breq2 4009 . . . 4 (𝑤 = 𝑦 → (𝑥𝐴𝑤𝑥𝐴𝑦))
1716exbidv 1825 . . 3 (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦))
1814, 15, 17cbvab 2301 . 2 {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
191, 9, 183eqtri 2202 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wex 1492  {cab 2163  wnfc 2306   class class class wbr 4005  ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  rnopab  4876
  Copyright terms: Public domain W3C validator