![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrnf | GIF version |
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 4850 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
2 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 4075 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
6 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
7 | breq1 4032 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
8 | 5, 6, 7 | cbvex 1767 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
9 | 8 | abbii 2309 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
10 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
12 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
13 | 10, 11, 12 | nfbr 4075 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
14 | 13 | nfex 1648 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
15 | nfv 1539 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
16 | breq2 4033 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
17 | 16 | exbidv 1836 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
18 | 14, 15, 17 | cbvab 2317 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
19 | 1, 9, 18 | 3eqtri 2218 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃wex 1503 {cab 2179 Ⅎwnfc 2323 class class class wbr 4029 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: rnopab 4909 |
Copyright terms: Public domain | W3C validator |