| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrnf | GIF version | ||
| Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 4854 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
| 2 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
| 3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 5 | 2, 3, 4 | nfbr 4079 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
| 6 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
| 7 | breq1 4036 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
| 8 | 5, 6, 7 | cbvex 1770 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
| 9 | 8 | abbii 2312 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
| 10 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
| 11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 12 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 13 | 10, 11, 12 | nfbr 4079 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
| 14 | 13 | nfex 1651 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
| 15 | nfv 1542 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
| 16 | breq2 4037 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
| 17 | 16 | exbidv 1839 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
| 18 | 14, 15, 17 | cbvab 2320 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 19 | 1, 9, 18 | 3eqtri 2221 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃wex 1506 {cab 2182 Ⅎwnfc 2326 class class class wbr 4033 ran crn 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: rnopab 4913 |
| Copyright terms: Public domain | W3C validator |