| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrnf | GIF version | ||
| Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 4873 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
| 2 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
| 3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 5 | 2, 3, 4 | nfbr 4097 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
| 6 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
| 7 | breq1 4053 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
| 8 | 5, 6, 7 | cbvex 1780 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
| 9 | 8 | abbii 2322 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
| 10 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
| 11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 12 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 13 | 10, 11, 12 | nfbr 4097 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
| 14 | 13 | nfex 1661 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
| 15 | nfv 1552 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
| 16 | breq2 4054 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
| 17 | 16 | exbidv 1849 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
| 18 | 14, 15, 17 | cbvab 2330 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 19 | 1, 9, 18 | 3eqtri 2231 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃wex 1516 {cab 2192 Ⅎwnfc 2336 class class class wbr 4050 ran crn 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-cnv 4690 df-dm 4692 df-rn 4693 |
| This theorem is referenced by: rnopab 4933 |
| Copyright terms: Public domain | W3C validator |