Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans2 Unicode version

Theorem bj-nntrans2 14865
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans2  |-  ( A  e.  om  ->  Tr  A )

Proof of Theorem bj-nntrans2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans 14864 . . 3  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  C_  A ) )
21ralrimiv 2549 . 2  |-  ( A  e.  om  ->  A. x  e.  A  x  C_  A
)
3 dftr3 4107 . 2  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
42, 3sylibr 134 1  |-  ( A  e.  om  ->  Tr  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   A.wral 2455    C_ wss 3131   Tr wtr 4103   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14726  ax-bdor 14729  ax-bdal 14731  ax-bdex 14732  ax-bdeq 14733  ax-bdel 14734  ax-bdsb 14735  ax-bdsep 14797  ax-infvn 14854
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-suc 4373  df-iom 4592  df-bdc 14754  df-bj-ind 14840
This theorem is referenced by:  bj-nnord  14871  bj-omord  14873
  Copyright terms: Public domain W3C validator