Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans2 Unicode version

Theorem bj-nntrans2 16315
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans2  |-  ( A  e.  om  ->  Tr  A )

Proof of Theorem bj-nntrans2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans 16314 . . 3  |-  ( A  e.  om  ->  (
x  e.  A  ->  x  C_  A ) )
21ralrimiv 2602 . 2  |-  ( A  e.  om  ->  A. x  e.  A  x  C_  A
)
3 dftr3 4186 . 2  |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
42, 3sylibr 134 1  |-  ( A  e.  om  ->  Tr  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   A.wral 2508    C_ wss 3197   Tr wtr 4182   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-nul 4210  ax-pr 4293  ax-un 4524  ax-bd0 16176  ax-bdor 16179  ax-bdal 16181  ax-bdex 16182  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185  ax-bdsep 16247  ax-infvn 16304
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-suc 4462  df-iom 4683  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by:  bj-nnord  16321  bj-omord  16323
  Copyright terms: Public domain W3C validator