ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfex GIF version

Theorem dmfex 5464
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dmfex ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)

Proof of Theorem dmfex
StepHypRef Expression
1 fdm 5430 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 dmexg 4941 . . . 4 (𝐹𝐶 → dom 𝐹 ∈ V)
3 eleq1 2267 . . . 4 (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
42, 3imbitrid 154 . . 3 (dom 𝐹 = 𝐴 → (𝐹𝐶𝐴 ∈ V))
51, 4syl 14 . 2 (𝐹:𝐴𝐵 → (𝐹𝐶𝐴 ∈ V))
65impcom 125 1 ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  dom cdm 4674  wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-cnv 4682  df-dm 4684  df-rn 4685  df-fn 5273  df-f 5274
This theorem is referenced by:  fopwdom  6932
  Copyright terms: Public domain W3C validator