| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmfex | GIF version | ||
| Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| dmfex | ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5430 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | dmexg 4941 | . . . 4 ⊢ (𝐹 ∈ 𝐶 → dom 𝐹 ∈ V) | |
| 3 | eleq1 2267 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V)) | |
| 4 | 2, 3 | imbitrid 154 | . . 3 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
| 5 | 1, 4 | syl 14 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∈ 𝐶 → 𝐴 ∈ V)) |
| 6 | 5 | impcom 125 | 1 ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 dom cdm 4674 ⟶wf 5266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-cnv 4682 df-dm 4684 df-rn 4685 df-fn 5273 df-f 5274 |
| This theorem is referenced by: fopwdom 6932 |
| Copyright terms: Public domain | W3C validator |