ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfex GIF version

Theorem dmfex 5443
Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
dmfex ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)

Proof of Theorem dmfex
StepHypRef Expression
1 fdm 5409 . . 3 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 dmexg 4926 . . . 4 (𝐹𝐶 → dom 𝐹 ∈ V)
3 eleq1 2256 . . . 4 (dom 𝐹 = 𝐴 → (dom 𝐹 ∈ V ↔ 𝐴 ∈ V))
42, 3imbitrid 154 . . 3 (dom 𝐹 = 𝐴 → (𝐹𝐶𝐴 ∈ V))
51, 4syl 14 . 2 (𝐹:𝐴𝐵 → (𝐹𝐶𝐴 ∈ V))
65impcom 125 1 ((𝐹𝐶𝐹:𝐴𝐵) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  dom cdm 4659  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670  df-fn 5257  df-f 5258
This theorem is referenced by:  fopwdom  6892
  Copyright terms: Public domain W3C validator