| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fopwdom | Unicode version | ||
| Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| fopwdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5020 |
. . . . . 6
| |
| 2 | dfdm4 4858 |
. . . . . . 7
| |
| 3 | fof 5480 |
. . . . . . . 8
| |
| 4 | fdm 5413 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 2, 5 | eqtr3id 2243 |
. . . . . 6
|
| 7 | 1, 6 | sseqtrid 3233 |
. . . . 5
|
| 8 | 7 | adantl 277 |
. . . 4
|
| 9 | cnvexg 5207 |
. . . . . 6
| |
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | imaexg 5023 |
. . . . 5
| |
| 12 | elpwg 3613 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3syl 17 |
. . . 4
|
| 14 | 8, 13 | mpbird 167 |
. . 3
|
| 15 | 14 | a1d 22 |
. 2
|
| 16 | imaeq2 5005 |
. . . . . . 7
| |
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | simpllr 534 |
. . . . . . 7
| |
| 19 | simplrl 535 |
. . . . . . . 8
| |
| 20 | 19 | elpwid 3616 |
. . . . . . 7
|
| 21 | foimacnv 5522 |
. . . . . . 7
| |
| 22 | 18, 20, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | simplrr 536 |
. . . . . . . 8
| |
| 24 | 23 | elpwid 3616 |
. . . . . . 7
|
| 25 | foimacnv 5522 |
. . . . . . 7
| |
| 26 | 18, 24, 25 | syl2anc 411 |
. . . . . 6
|
| 27 | 17, 22, 26 | 3eqtr3d 2237 |
. . . . 5
|
| 28 | 27 | ex 115 |
. . . 4
|
| 29 | imaeq2 5005 |
. . . 4
| |
| 30 | 28, 29 | impbid1 142 |
. . 3
|
| 31 | 30 | ex 115 |
. 2
|
| 32 | rnexg 4931 |
. . . . 5
| |
| 33 | forn 5483 |
. . . . . 6
| |
| 34 | 33 | eleq1d 2265 |
. . . . 5
|
| 35 | 32, 34 | syl5ibcom 155 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | pwexg 4213 |
. . 3
| |
| 38 | 36, 37 | syl 14 |
. 2
|
| 39 | dmfex 5447 |
. . . 4
| |
| 40 | 3, 39 | sylan2 286 |
. . 3
|
| 41 | pwexg 4213 |
. . 3
| |
| 42 | 40, 41 | syl 14 |
. 2
|
| 43 | 15, 31, 38, 42 | dom3d 6833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-fv 5266 df-dom 6801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |