Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fopwdom | Unicode version |
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fopwdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4964 | . . . . . 6 | |
2 | dfdm4 4803 | . . . . . . 7 | |
3 | fof 5420 | . . . . . . . 8 | |
4 | fdm 5353 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 2, 5 | eqtr3id 2217 | . . . . . 6 |
7 | 1, 6 | sseqtrid 3197 | . . . . 5 |
8 | 7 | adantl 275 | . . . 4 |
9 | cnvexg 5148 | . . . . . 6 | |
10 | 9 | adantr 274 | . . . . 5 |
11 | imaexg 4965 | . . . . 5 | |
12 | elpwg 3574 | . . . . 5 | |
13 | 10, 11, 12 | 3syl 17 | . . . 4 |
14 | 8, 13 | mpbird 166 | . . 3 |
15 | 14 | a1d 22 | . 2 |
16 | imaeq2 4949 | . . . . . . 7 | |
17 | 16 | adantl 275 | . . . . . 6 |
18 | simpllr 529 | . . . . . . 7 | |
19 | simplrl 530 | . . . . . . . 8 | |
20 | 19 | elpwid 3577 | . . . . . . 7 |
21 | foimacnv 5460 | . . . . . . 7 | |
22 | 18, 20, 21 | syl2anc 409 | . . . . . 6 |
23 | simplrr 531 | . . . . . . . 8 | |
24 | 23 | elpwid 3577 | . . . . . . 7 |
25 | foimacnv 5460 | . . . . . . 7 | |
26 | 18, 24, 25 | syl2anc 409 | . . . . . 6 |
27 | 17, 22, 26 | 3eqtr3d 2211 | . . . . 5 |
28 | 27 | ex 114 | . . . 4 |
29 | imaeq2 4949 | . . . 4 | |
30 | 28, 29 | impbid1 141 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | rnexg 4876 | . . . . 5 | |
33 | forn 5423 | . . . . . 6 | |
34 | 33 | eleq1d 2239 | . . . . 5 |
35 | 32, 34 | syl5ibcom 154 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | pwexg 4166 | . . 3 | |
38 | 36, 37 | syl 14 | . 2 |
39 | dmfex 5387 | . . . 4 | |
40 | 3, 39 | sylan2 284 | . . 3 |
41 | pwexg 4166 | . . 3 | |
42 | 40, 41 | syl 14 | . 2 |
43 | 15, 31, 38, 42 | dom3d 6752 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wss 3121 cpw 3566 class class class wbr 3989 ccnv 4610 cdm 4611 crn 4612 cima 4614 wf 5194 wfo 5196 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-fv 5206 df-dom 6720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |