Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fopwdom | Unicode version |
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fopwdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4962 | . . . . . 6 | |
2 | dfdm4 4801 | . . . . . . 7 | |
3 | fof 5418 | . . . . . . . 8 | |
4 | fdm 5351 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 2, 5 | eqtr3id 2217 | . . . . . 6 |
7 | 1, 6 | sseqtrid 3197 | . . . . 5 |
8 | 7 | adantl 275 | . . . 4 |
9 | cnvexg 5146 | . . . . . 6 | |
10 | 9 | adantr 274 | . . . . 5 |
11 | imaexg 4963 | . . . . 5 | |
12 | elpwg 3572 | . . . . 5 | |
13 | 10, 11, 12 | 3syl 17 | . . . 4 |
14 | 8, 13 | mpbird 166 | . . 3 |
15 | 14 | a1d 22 | . 2 |
16 | imaeq2 4947 | . . . . . . 7 | |
17 | 16 | adantl 275 | . . . . . 6 |
18 | simpllr 529 | . . . . . . 7 | |
19 | simplrl 530 | . . . . . . . 8 | |
20 | 19 | elpwid 3575 | . . . . . . 7 |
21 | foimacnv 5458 | . . . . . . 7 | |
22 | 18, 20, 21 | syl2anc 409 | . . . . . 6 |
23 | simplrr 531 | . . . . . . . 8 | |
24 | 23 | elpwid 3575 | . . . . . . 7 |
25 | foimacnv 5458 | . . . . . . 7 | |
26 | 18, 24, 25 | syl2anc 409 | . . . . . 6 |
27 | 17, 22, 26 | 3eqtr3d 2211 | . . . . 5 |
28 | 27 | ex 114 | . . . 4 |
29 | imaeq2 4947 | . . . 4 | |
30 | 28, 29 | impbid1 141 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | rnexg 4874 | . . . . 5 | |
33 | forn 5421 | . . . . . 6 | |
34 | 33 | eleq1d 2239 | . . . . 5 |
35 | 32, 34 | syl5ibcom 154 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | pwexg 4164 | . . 3 | |
38 | 36, 37 | syl 14 | . 2 |
39 | dmfex 5385 | . . . 4 | |
40 | 3, 39 | sylan2 284 | . . 3 |
41 | pwexg 4164 | . . 3 | |
42 | 40, 41 | syl 14 | . 2 |
43 | 15, 31, 38, 42 | dom3d 6748 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wss 3121 cpw 3564 class class class wbr 3987 ccnv 4608 cdm 4609 crn 4610 cima 4612 wf 5192 wfo 5194 cdom 6713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-fv 5204 df-dom 6716 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |