ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fopwdom Unicode version

Theorem fopwdom 6935
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fopwdom  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )

Proof of Theorem fopwdom
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5034 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
2 dfdm4 4871 . . . . . . 7  |-  dom  F  =  ran  `' F
3 fof 5500 . . . . . . . 8  |-  ( F : A -onto-> B  ->  F : A --> B )
4 fdm 5433 . . . . . . . 8  |-  ( F : A --> B  ->  dom  F  =  A )
53, 4syl 14 . . . . . . 7  |-  ( F : A -onto-> B  ->  dom  F  =  A )
62, 5eqtr3id 2252 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  `' F  =  A
)
71, 6sseqtrid 3243 . . . . 5  |-  ( F : A -onto-> B  -> 
( `' F "
a )  C_  A
)
87adantl 277 . . . 4  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( `' F " a )  C_  A
)
9 cnvexg 5221 . . . . . 6  |-  ( F  e.  _V  ->  `' F  e.  _V )
109adantr 276 . . . . 5  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  `' F  e. 
_V )
11 imaexg 5037 . . . . 5  |-  ( `' F  e.  _V  ->  ( `' F " a )  e.  _V )
12 elpwg 3624 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
1310, 11, 123syl 17 . . . 4  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
148, 13mpbird 167 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( `' F " a )  e.  ~P A )
1514a1d 22 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( a  e. 
~P B  ->  ( `' F " a )  e.  ~P A ) )
16 imaeq2 5019 . . . . . . 7  |-  ( ( `' F " a )  =  ( `' F " b )  ->  ( F " ( `' F " a ) )  =  ( F " ( `' F " b ) ) )
1716adantl 277 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  ( F
" ( `' F " b ) ) )
18 simpllr 534 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  ->  F : A -onto-> B )
19 simplrl 535 . . . . . . . 8  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  e.  ~P B
)
2019elpwid 3627 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  C_  B )
21 foimacnv 5542 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
2218, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  a )
23 simplrr 536 . . . . . . . 8  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  e.  ~P B
)
2423elpwid 3627 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  C_  B )
25 foimacnv 5542 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  b  C_  B )  ->  ( F "
( `' F "
b ) )  =  b )
2618, 24, 25syl2anc 411 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " b ) )  =  b )
2717, 22, 263eqtr3d 2246 . . . . 5  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  =  b )
2827ex 115 . . . 4  |-  ( ( ( F  e.  _V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  ->  a  =  b ) )
29 imaeq2 5019 . . . 4  |-  ( a  =  b  ->  ( `' F " a )  =  ( `' F " b ) )
3028, 29impbid1 142 . . 3  |-  ( ( ( F  e.  _V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) )
3130ex 115 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( ( a  e.  ~P B  /\  b  e.  ~P B
)  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) ) )
32 rnexg 4944 . . . . 5  |-  ( F  e.  _V  ->  ran  F  e.  _V )
33 forn 5503 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
3433eleq1d 2274 . . . . 5  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
3532, 34syl5ibcom 155 . . . 4  |-  ( F  e.  _V  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
3635imp 124 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  B  e.  _V )
37 pwexg 4225 . . 3  |-  ( B  e.  _V  ->  ~P B  e.  _V )
3836, 37syl 14 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  e. 
_V )
39 dmfex 5467 . . . 4  |-  ( ( F  e.  _V  /\  F : A --> B )  ->  A  e.  _V )
403, 39sylan2 286 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  A  e.  _V )
41 pwexg 4225 . . 3  |-  ( A  e.  _V  ->  ~P A  e.  _V )
4240, 41syl 14 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P A  e. 
_V )
4315, 31, 38, 42dom3d 6867 1  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616   class class class wbr 4045   `'ccnv 4675   dom cdm 4676   ran crn 4677   "cima 4679   -->wf 5268   -onto->wfo 5270    ~<_ cdom 6828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-fv 5280  df-dom 6831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator