Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fopwdom | Unicode version |
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fopwdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4957 | . . . . . 6 | |
2 | dfdm4 4796 | . . . . . . 7 | |
3 | fof 5410 | . . . . . . . 8 | |
4 | fdm 5343 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 2, 5 | eqtr3id 2213 | . . . . . 6 |
7 | 1, 6 | sseqtrid 3192 | . . . . 5 |
8 | 7 | adantl 275 | . . . 4 |
9 | cnvexg 5141 | . . . . . 6 | |
10 | 9 | adantr 274 | . . . . 5 |
11 | imaexg 4958 | . . . . 5 | |
12 | elpwg 3567 | . . . . 5 | |
13 | 10, 11, 12 | 3syl 17 | . . . 4 |
14 | 8, 13 | mpbird 166 | . . 3 |
15 | 14 | a1d 22 | . 2 |
16 | imaeq2 4942 | . . . . . . 7 | |
17 | 16 | adantl 275 | . . . . . 6 |
18 | simpllr 524 | . . . . . . 7 | |
19 | simplrl 525 | . . . . . . . 8 | |
20 | 19 | elpwid 3570 | . . . . . . 7 |
21 | foimacnv 5450 | . . . . . . 7 | |
22 | 18, 20, 21 | syl2anc 409 | . . . . . 6 |
23 | simplrr 526 | . . . . . . . 8 | |
24 | 23 | elpwid 3570 | . . . . . . 7 |
25 | foimacnv 5450 | . . . . . . 7 | |
26 | 18, 24, 25 | syl2anc 409 | . . . . . 6 |
27 | 17, 22, 26 | 3eqtr3d 2206 | . . . . 5 |
28 | 27 | ex 114 | . . . 4 |
29 | imaeq2 4942 | . . . 4 | |
30 | 28, 29 | impbid1 141 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | rnexg 4869 | . . . . 5 | |
33 | forn 5413 | . . . . . 6 | |
34 | 33 | eleq1d 2235 | . . . . 5 |
35 | 32, 34 | syl5ibcom 154 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | pwexg 4159 | . . 3 | |
38 | 36, 37 | syl 14 | . 2 |
39 | dmfex 5377 | . . . 4 | |
40 | 3, 39 | sylan2 284 | . . 3 |
41 | pwexg 4159 | . . 3 | |
42 | 40, 41 | syl 14 | . 2 |
43 | 15, 31, 38, 42 | dom3d 6740 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 wss 3116 cpw 3559 class class class wbr 3982 ccnv 4603 cdm 4604 crn 4605 cima 4607 wf 5184 wfo 5186 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-fv 5196 df-dom 6708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |