ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fopwdom Unicode version

Theorem fopwdom 6830
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fopwdom  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )

Proof of Theorem fopwdom
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 4977 . . . . . 6  |-  ( `' F " a ) 
C_  ran  `' F
2 dfdm4 4815 . . . . . . 7  |-  dom  F  =  ran  `' F
3 fof 5434 . . . . . . . 8  |-  ( F : A -onto-> B  ->  F : A --> B )
4 fdm 5367 . . . . . . . 8  |-  ( F : A --> B  ->  dom  F  =  A )
53, 4syl 14 . . . . . . 7  |-  ( F : A -onto-> B  ->  dom  F  =  A )
62, 5eqtr3id 2224 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  `' F  =  A
)
71, 6sseqtrid 3205 . . . . 5  |-  ( F : A -onto-> B  -> 
( `' F "
a )  C_  A
)
87adantl 277 . . . 4  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( `' F " a )  C_  A
)
9 cnvexg 5162 . . . . . 6  |-  ( F  e.  _V  ->  `' F  e.  _V )
109adantr 276 . . . . 5  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  `' F  e. 
_V )
11 imaexg 4978 . . . . 5  |-  ( `' F  e.  _V  ->  ( `' F " a )  e.  _V )
12 elpwg 3582 . . . . 5  |-  ( ( `' F " a )  e.  _V  ->  (
( `' F "
a )  e.  ~P A 
<->  ( `' F "
a )  C_  A
) )
1310, 11, 123syl 17 . . . 4  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( ( `' F " a )  e.  ~P A  <->  ( `' F " a )  C_  A ) )
148, 13mpbird 167 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( `' F " a )  e.  ~P A )
1514a1d 22 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( a  e. 
~P B  ->  ( `' F " a )  e.  ~P A ) )
16 imaeq2 4962 . . . . . . 7  |-  ( ( `' F " a )  =  ( `' F " b )  ->  ( F " ( `' F " a ) )  =  ( F " ( `' F " b ) ) )
1716adantl 277 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  ( F
" ( `' F " b ) ) )
18 simpllr 534 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  ->  F : A -onto-> B )
19 simplrl 535 . . . . . . . 8  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  e.  ~P B
)
2019elpwid 3585 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  C_  B )
21 foimacnv 5475 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  a  C_  B )  ->  ( F "
( `' F "
a ) )  =  a )
2218, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " a ) )  =  a )
23 simplrr 536 . . . . . . . 8  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  e.  ~P B
)
2423elpwid 3585 . . . . . . 7  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
b  C_  B )
25 foimacnv 5475 . . . . . . 7  |-  ( ( F : A -onto-> B  /\  b  C_  B )  ->  ( F "
( `' F "
b ) )  =  b )
2618, 24, 25syl2anc 411 . . . . . 6  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
( F " ( `' F " b ) )  =  b )
2717, 22, 263eqtr3d 2218 . . . . 5  |-  ( ( ( ( F  e. 
_V  /\  F : A -onto-> B )  /\  (
a  e.  ~P B  /\  b  e.  ~P B ) )  /\  ( `' F " a )  =  ( `' F " b ) )  -> 
a  =  b )
2827ex 115 . . . 4  |-  ( ( ( F  e.  _V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  ->  a  =  b ) )
29 imaeq2 4962 . . . 4  |-  ( a  =  b  ->  ( `' F " a )  =  ( `' F " b ) )
3028, 29impbid1 142 . . 3  |-  ( ( ( F  e.  _V  /\  F : A -onto-> B
)  /\  ( a  e.  ~P B  /\  b  e.  ~P B ) )  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) )
3130ex 115 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ( ( a  e.  ~P B  /\  b  e.  ~P B
)  ->  ( ( `' F " a )  =  ( `' F " b )  <->  a  =  b ) ) )
32 rnexg 4888 . . . . 5  |-  ( F  e.  _V  ->  ran  F  e.  _V )
33 forn 5437 . . . . . 6  |-  ( F : A -onto-> B  ->  ran  F  =  B )
3433eleq1d 2246 . . . . 5  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
3532, 34syl5ibcom 155 . . . 4  |-  ( F  e.  _V  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
3635imp 124 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  B  e.  _V )
37 pwexg 4177 . . 3  |-  ( B  e.  _V  ->  ~P B  e.  _V )
3836, 37syl 14 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  e. 
_V )
39 dmfex 5401 . . . 4  |-  ( ( F  e.  _V  /\  F : A --> B )  ->  A  e.  _V )
403, 39sylan2 286 . . 3  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  A  e.  _V )
41 pwexg 4177 . . 3  |-  ( A  e.  _V  ->  ~P A  e.  _V )
4240, 41syl 14 . 2  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P A  e. 
_V )
4315, 31, 38, 42dom3d 6768 1  |-  ( ( F  e.  _V  /\  F : A -onto-> B )  ->  ~P B  ~<_  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2737    C_ wss 3129   ~Pcpw 3574   class class class wbr 4000   `'ccnv 4622   dom cdm 4623   ran crn 4624   "cima 4626   -->wf 5208   -onto->wfo 5210    ~<_ cdom 6733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-fv 5220  df-dom 6736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator