![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldm2 | Unicode version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
eldm.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldm2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eldm2g 4858 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-dm 4669 |
This theorem is referenced by: dmss 4861 opeldm 4865 dmin 4870 dmiun 4871 dmuni 4872 dm0 4876 reldm0 4880 dmrnssfld 4925 dmcoss 4931 dmcosseq 4933 dmres 4963 iss 4988 dmxpss 5096 dmsnopg 5137 relssdmrn 5186 funssres 5296 fun11iun 5521 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 fnpr2ob 12923 |
Copyright terms: Public domain | W3C validator |