ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 Unicode version

Theorem eldm2 4921
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1  |-  A  e. 
_V
Assertion
Ref Expression
eldm2  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Distinct variable groups:    y, A    y, B

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2  |-  A  e. 
_V
2 eldm2g 4919 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1538    e. wcel 2200   _Vcvv 2799   <.cop 3669   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by:  dmss  4922  opeldm  4926  dmin  4931  dmiun  4932  dmuni  4933  dm0  4937  reldm0  4941  reldmm  4942  dmrnssfld  4987  dmcoss  4994  dmcosseq  4996  dmres  5026  iss  5051  dmxpss  5159  dmsnopg  5200  relssdmrn  5249  funssres  5360  fun11iun  5593  tfrlemibxssdm  6473  tfr1onlembxssdm  6489  tfrcllembxssdm  6502  fnpr2ob  13373
  Copyright terms: Public domain W3C validator