ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 Unicode version

Theorem eldm2 4861
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1  |-  A  e. 
_V
Assertion
Ref Expression
eldm2  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Distinct variable groups:    y, A    y, B

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2  |-  A  e. 
_V
2 eldm2g 4859 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1503    e. wcel 2164   _Vcvv 2760   <.cop 3622   dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-dm 4670
This theorem is referenced by:  dmss  4862  opeldm  4866  dmin  4871  dmiun  4872  dmuni  4873  dm0  4877  reldm0  4881  dmrnssfld  4926  dmcoss  4932  dmcosseq  4934  dmres  4964  iss  4989  dmxpss  5097  dmsnopg  5138  relssdmrn  5187  funssres  5297  fun11iun  5522  tfrlemibxssdm  6382  tfr1onlembxssdm  6398  tfrcllembxssdm  6411  fnpr2ob  12926
  Copyright terms: Public domain W3C validator