![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldm2 | Unicode version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
eldm.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eldm2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eldm2g 4841 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-dm 4654 |
This theorem is referenced by: dmss 4844 opeldm 4848 dmin 4853 dmiun 4854 dmuni 4855 dm0 4859 reldm0 4863 dmrnssfld 4908 dmcoss 4914 dmcosseq 4916 dmres 4946 iss 4971 dmxpss 5077 dmsnopg 5118 relssdmrn 5167 funssres 5277 fun11iun 5501 tfrlemibxssdm 6352 tfr1onlembxssdm 6368 tfrcllembxssdm 6381 fnpr2ob 12816 |
Copyright terms: Public domain | W3C validator |