ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 Unicode version

Theorem eldm2 4825
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1  |-  A  e. 
_V
Assertion
Ref Expression
eldm2  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Distinct variable groups:    y, A    y, B

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2  |-  A  e. 
_V
2 eldm2g 4823 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1492    e. wcel 2148   _Vcvv 2737   <.cop 3595   dom cdm 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-dm 4636
This theorem is referenced by:  dmss  4826  opeldm  4830  dmin  4835  dmiun  4836  dmuni  4837  dm0  4841  reldm0  4845  dmrnssfld  4890  dmcoss  4896  dmcosseq  4898  dmres  4928  iss  4953  dmxpss  5059  dmsnopg  5100  relssdmrn  5149  funssres  5258  fun11iun  5482  tfrlemibxssdm  6327  tfr1onlembxssdm  6343  tfrcllembxssdm  6356  fnpr2ob  12758
  Copyright terms: Public domain W3C validator