ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2 Unicode version

Theorem eldm2 4809
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1  |-  A  e. 
_V
Assertion
Ref Expression
eldm2  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Distinct variable groups:    y, A    y, B

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2  |-  A  e. 
_V
2 eldm2g 4807 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1485    e. wcel 2141   _Vcvv 2730   <.cop 3586   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  dmss  4810  opeldm  4814  dmin  4819  dmiun  4820  dmuni  4821  dm0  4825  reldm0  4829  dmrnssfld  4874  dmcoss  4880  dmcosseq  4882  dmres  4912  iss  4937  dmxpss  5041  dmsnopg  5082  relssdmrn  5131  funssres  5240  fun11iun  5463  tfrlemibxssdm  6306  tfr1onlembxssdm  6322  tfrcllembxssdm  6335
  Copyright terms: Public domain W3C validator