ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiun Unicode version

Theorem dmiun 4658
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B

Proof of Theorem dmiun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2643 . . . 4  |-  ( E. x  e.  A  E. z <. y ,  z
>.  e.  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2623 . . . . . 6  |-  y  e. 
_V
32eldm2 4647 . . . . 5  |-  ( y  e.  dom  B  <->  E. z <. y ,  z >.  e.  B )
43rexbii 2386 . . . 4  |-  ( E. x  e.  A  y  e.  dom  B  <->  E. x  e.  A  E. z <. y ,  z >.  e.  B )
5 eliun 3740 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1542 . . . 4  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 212 . . 3  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  dom  B )
82eldm2 4647 . . 3  |-  ( y  e.  dom  U_ x  e.  A  B  <->  E. z <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3740 . . 3  |-  ( y  e.  U_ x  e.  A  dom  B  <->  E. x  e.  A  y  e.  dom  B )
107, 8, 93bitr4i 211 . 2  |-  ( y  e.  dom  U_ x  e.  A  B  <->  y  e.  U_ x  e.  A  dom  B )
1110eqriv 2086 1  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    = wceq 1290   E.wex 1427    e. wcel 1439   E.wrex 2361   <.cop 3453   U_ciun 3736   dom cdm 4452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-iun 3738  df-br 3852  df-dm 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator