ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiun Unicode version

Theorem dmiun 4896
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B

Proof of Theorem dmiun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2797 . . . 4  |-  ( E. x  e.  A  E. z <. y ,  z
>.  e.  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2776 . . . . . 6  |-  y  e. 
_V
32eldm2 4885 . . . . 5  |-  ( y  e.  dom  B  <->  E. z <. y ,  z >.  e.  B )
43rexbii 2514 . . . 4  |-  ( E. x  e.  A  y  e.  dom  B  <->  E. x  e.  A  E. z <. y ,  z >.  e.  B )
5 eliun 3937 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1629 . . . 4  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 213 . . 3  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  dom  B )
82eldm2 4885 . . 3  |-  ( y  e.  dom  U_ x  e.  A  B  <->  E. z <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3937 . . 3  |-  ( y  e.  U_ x  e.  A  dom  B  <->  E. x  e.  A  y  e.  dom  B )
107, 8, 93bitr4i 212 . 2  |-  ( y  e.  dom  U_ x  e.  A  B  <->  y  e.  U_ x  e.  A  dom  B )
1110eqriv 2203 1  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1516    e. wcel 2177   E.wrex 2486   <.cop 3641   U_ciun 3933   dom cdm 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-iun 3935  df-br 4052  df-dm 4693
This theorem is referenced by:  ennnfonelemdm  12866
  Copyright terms: Public domain W3C validator