ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiun Unicode version

Theorem dmiun 4875
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B

Proof of Theorem dmiun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2786 . . . 4  |-  ( E. x  e.  A  E. z <. y ,  z
>.  e.  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2766 . . . . . 6  |-  y  e. 
_V
32eldm2 4864 . . . . 5  |-  ( y  e.  dom  B  <->  E. z <. y ,  z >.  e.  B )
43rexbii 2504 . . . 4  |-  ( E. x  e.  A  y  e.  dom  B  <->  E. x  e.  A  E. z <. y ,  z >.  e.  B )
5 eliun 3920 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1619 . . . 4  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 213 . . 3  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  dom  B )
82eldm2 4864 . . 3  |-  ( y  e.  dom  U_ x  e.  A  B  <->  E. z <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3920 . . 3  |-  ( y  e.  U_ x  e.  A  dom  B  <->  E. x  e.  A  y  e.  dom  B )
107, 8, 93bitr4i 212 . 2  |-  ( y  e.  dom  U_ x  e.  A  B  <->  y  e.  U_ x  e.  A  dom  B )
1110eqriv 2193 1  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   <.cop 3625   U_ciun 3916   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-iun 3918  df-br 4034  df-dm 4673
This theorem is referenced by:  ennnfonelemdm  12637
  Copyright terms: Public domain W3C validator