ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiun Unicode version

Theorem dmiun 4813
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B

Proof of Theorem dmiun
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2749 . . . 4  |-  ( E. x  e.  A  E. z <. y ,  z
>.  e.  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
2 vex 2729 . . . . . 6  |-  y  e. 
_V
32eldm2 4802 . . . . 5  |-  ( y  e.  dom  B  <->  E. z <. y ,  z >.  e.  B )
43rexbii 2473 . . . 4  |-  ( E. x  e.  A  y  e.  dom  B  <->  E. x  e.  A  E. z <. y ,  z >.  e.  B )
5 eliun 3870 . . . . 5  |-  ( <.
y ,  z >.  e.  U_ x  e.  A  B 
<->  E. x  e.  A  <. y ,  z >.  e.  B )
65exbii 1593 . . . 4  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. z E. x  e.  A  <. y ,  z >.  e.  B )
71, 4, 63bitr4ri 212 . . 3  |-  ( E. z <. y ,  z
>.  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  dom  B )
82eldm2 4802 . . 3  |-  ( y  e.  dom  U_ x  e.  A  B  <->  E. z <. y ,  z >.  e.  U_ x  e.  A  B )
9 eliun 3870 . . 3  |-  ( y  e.  U_ x  e.  A  dom  B  <->  E. x  e.  A  y  e.  dom  B )
107, 8, 93bitr4i 211 . 2  |-  ( y  e.  dom  U_ x  e.  A  B  <->  y  e.  U_ x  e.  A  dom  B )
1110eqriv 2162 1  |-  dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   <.cop 3579   U_ciun 3866   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-iun 3868  df-br 3983  df-dm 4614
This theorem is referenced by:  ennnfonelemdm  12353
  Copyright terms: Public domain W3C validator