ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdmres Unicode version

Theorem ssdmres 4964
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )

Proof of Theorem ssdmres
StepHypRef Expression
1 df-ss 3166 . 2  |-  ( A 
C_  dom  B  <->  ( A  i^i  dom  B )  =  A )
2 dmres 4963 . . 3  |-  dom  ( B  |`  A )  =  ( A  i^i  dom  B )
32eqeq1i 2201 . 2  |-  ( dom  ( B  |`  A )  =  A  <->  ( A  i^i  dom  B )  =  A )
41, 3bitr4i 187 1  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    i^i cin 3152    C_ wss 3153   dom cdm 4659    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669  df-res 4671
This theorem is referenced by:  dmresi  4997  fnssresb  5366  fores  5486  foimacnv  5518  rdgivallem  6434  sbthlemi4  7019
  Copyright terms: Public domain W3C validator