ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdmres Unicode version

Theorem ssdmres 4969
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )

Proof of Theorem ssdmres
StepHypRef Expression
1 df-ss 3170 . 2  |-  ( A 
C_  dom  B  <->  ( A  i^i  dom  B )  =  A )
2 dmres 4968 . . 3  |-  dom  ( B  |`  A )  =  ( A  i^i  dom  B )
32eqeq1i 2204 . 2  |-  ( dom  ( B  |`  A )  =  A  <->  ( A  i^i  dom  B )  =  A )
41, 3bitr4i 187 1  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    i^i cin 3156    C_ wss 3157   dom cdm 4664    |` cres 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-dm 4674  df-res 4676
This theorem is referenced by:  dmresi  5002  fnssresb  5373  fores  5493  foimacnv  5525  rdgivallem  6448  sbthlemi4  7035
  Copyright terms: Public domain W3C validator