ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdmres Unicode version

Theorem ssdmres 4906
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )

Proof of Theorem ssdmres
StepHypRef Expression
1 df-ss 3129 . 2  |-  ( A 
C_  dom  B  <->  ( A  i^i  dom  B )  =  A )
2 dmres 4905 . . 3  |-  dom  ( B  |`  A )  =  ( A  i^i  dom  B )
32eqeq1i 2173 . 2  |-  ( dom  ( B  |`  A )  =  A  <->  ( A  i^i  dom  B )  =  A )
41, 3bitr4i 186 1  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    i^i cin 3115    C_ wss 3116   dom cdm 4604    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614  df-res 4616
This theorem is referenced by:  dmresi  4939  fnssresb  5300  fores  5419  foimacnv  5450  rdgivallem  6349  sbthlemi4  6925
  Copyright terms: Public domain W3C validator