ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdmres Unicode version

Theorem ssdmres 5000
Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
Assertion
Ref Expression
ssdmres  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )

Proof of Theorem ssdmres
StepHypRef Expression
1 df-ss 3187 . 2  |-  ( A 
C_  dom  B  <->  ( A  i^i  dom  B )  =  A )
2 dmres 4999 . . 3  |-  dom  ( B  |`  A )  =  ( A  i^i  dom  B )
32eqeq1i 2215 . 2  |-  ( dom  ( B  |`  A )  =  A  <->  ( A  i^i  dom  B )  =  A )
41, 3bitr4i 187 1  |-  ( A 
C_  dom  B  <->  dom  ( B  |`  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    i^i cin 3173    C_ wss 3174   dom cdm 4693    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-dm 4703  df-res 4705
This theorem is referenced by:  dmresi  5033  fnssresb  5407  fores  5530  foimacnv  5562  rdgivallem  6490  sbthlemi4  7088
  Copyright terms: Public domain W3C validator