ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmresi GIF version

Theorem dmresi 4767
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
dmresi dom ( I ↾ 𝐴) = 𝐴

Proof of Theorem dmresi
StepHypRef Expression
1 ssv 3046 . . 3 𝐴 ⊆ V
2 dmi 4651 . . 3 dom I = V
31, 2sseqtr4i 3059 . 2 𝐴 ⊆ dom I
4 ssdmres 4735 . 2 (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴)
53, 4mpbi 143 1 dom ( I ↾ 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1289  Vcvv 2619  wss 2999   I cid 4115  dom cdm 4438  cres 4440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-dm 4448  df-res 4450
This theorem is referenced by:  fnresi  5131  iordsmo  6062
  Copyright terms: Public domain W3C validator