ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd0 Unicode version

Theorem 2nd0 6221
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0  |-  ( 2nd `  (/) )  =  (/)

Proof of Theorem 2nd0
StepHypRef Expression
1 0ex 4170 . . 3  |-  (/)  e.  _V
2 2ndvalg 6219 . . 3  |-  ( (/)  e.  _V  ->  ( 2nd `  (/) )  =  U. ran  { (/) } )
31, 2ax-mp 5 . 2  |-  ( 2nd `  (/) )  =  U. ran  { (/) }
4 dmsn0 5147 . . . 4  |-  dom  { (/)
}  =  (/)
5 dm0rn0 4893 . . . 4  |-  ( dom 
{ (/) }  =  (/)  <->  ran  {
(/) }  =  (/) )
64, 5mpbi 145 . . 3  |-  ran  { (/)
}  =  (/)
76unieqi 3859 . 2  |-  U. ran  {
(/) }  =  U. (/)
8 uni0 3876 . 2  |-  U. (/)  =  (/)
93, 7, 83eqtri 2229 1  |-  ( 2nd `  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   _Vcvv 2771   (/)c0 3459   {csn 3632   U.cuni 3849   dom cdm 4673   ran crn 4674   ` cfv 5268   2ndc2nd 6215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fv 5276  df-2nd 6217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator