ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd0 Unicode version

Theorem 2nd0 6124
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0  |-  ( 2nd `  (/) )  =  (/)

Proof of Theorem 2nd0
StepHypRef Expression
1 0ex 4116 . . 3  |-  (/)  e.  _V
2 2ndvalg 6122 . . 3  |-  ( (/)  e.  _V  ->  ( 2nd `  (/) )  =  U. ran  { (/) } )
31, 2ax-mp 5 . 2  |-  ( 2nd `  (/) )  =  U. ran  { (/) }
4 dmsn0 5078 . . . 4  |-  dom  { (/)
}  =  (/)
5 dm0rn0 4828 . . . 4  |-  ( dom 
{ (/) }  =  (/)  <->  ran  {
(/) }  =  (/) )
64, 5mpbi 144 . . 3  |-  ran  { (/)
}  =  (/)
76unieqi 3806 . 2  |-  U. ran  {
(/) }  =  U. (/)
8 uni0 3823 . 2  |-  U. (/)  =  (/)
93, 7, 83eqtri 2195 1  |-  ( 2nd `  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   (/)c0 3414   {csn 3583   U.cuni 3796   dom cdm 4611   ran crn 4612   ` cfv 5198   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-2nd 6120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator