ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2nd0 Unicode version

Theorem 2nd0 6289
Description: The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
Assertion
Ref Expression
2nd0  |-  ( 2nd `  (/) )  =  (/)

Proof of Theorem 2nd0
StepHypRef Expression
1 0ex 4210 . . 3  |-  (/)  e.  _V
2 2ndvalg 6287 . . 3  |-  ( (/)  e.  _V  ->  ( 2nd `  (/) )  =  U. ran  { (/) } )
31, 2ax-mp 5 . 2  |-  ( 2nd `  (/) )  =  U. ran  { (/) }
4 dmsn0 5195 . . . 4  |-  dom  { (/)
}  =  (/)
5 dm0rn0 4939 . . . 4  |-  ( dom 
{ (/) }  =  (/)  <->  ran  {
(/) }  =  (/) )
64, 5mpbi 145 . . 3  |-  ran  { (/)
}  =  (/)
76unieqi 3897 . 2  |-  U. ran  {
(/) }  =  U. (/)
8 uni0 3914 . 2  |-  U. (/)  =  (/)
93, 7, 83eqtri 2254 1  |-  ( 2nd `  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {csn 3666   U.cuni 3887   dom cdm 4718   ran crn 4719   ` cfv 5317   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-2nd 6285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator