Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version |
Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqd.1 |
Ref | Expression |
---|---|
dmeqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqd.1 | . 2 | |
2 | dmeq 4811 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-dm 4621 |
This theorem is referenced by: rneq 4838 dmsnsnsng 5088 elxp4 5098 fndmin 5603 1stvalg 6121 fo1st 6136 f1stres 6138 errn 6535 xpassen 6808 xpdom2 6809 frecuzrdgtclt 10377 shftdm 10786 ennnfonelemg 12358 ennnfonelem1 12362 ennnfonelemhdmp1 12364 ennnfonelemkh 12367 ennnfonelemhf1o 12368 ennnfonelemex 12369 ennnfonelemhom 12370 isstruct2im 12426 isstruct2r 12427 setsvalg 12446 cnprcl2k 13000 psmetdmdm 13118 xmetdmdm 13150 blfvalps 13179 limccl 13422 ellimc3apf 13423 dvfvalap 13444 dvcj 13467 dvexp 13469 dvmptclx 13474 dvmptaddx 13475 dvmptmulx 13476 |
Copyright terms: Public domain | W3C validator |