| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 |
|
| Ref | Expression |
|---|---|
| dmeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 |
. 2
| |
| 2 | dmeq 4923 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: rneq 4951 dmsnsnsng 5206 elxp4 5216 f10d 5607 fndmin 5742 1stvalg 6288 fo1st 6303 f1stres 6305 errn 6702 xpassen 6989 xpdom2 6990 frecuzrdgtclt 10643 s1dmg 11158 swrdval 11180 swrd0g 11192 shftdm 11333 ennnfonelemg 12974 ennnfonelem1 12978 ennnfonelemhdmp1 12980 ennnfonelemkh 12983 ennnfonelemhf1o 12984 ennnfonelemex 12985 ennnfonelemhom 12986 isstruct2im 13042 isstruct2r 13043 setsvalg 13062 bassetsnn 13089 prdsval 13306 igsumvalx 13422 cnprcl2k 14880 psmetdmdm 14998 xmetdmdm 15030 blfvalps 15059 limccl 15333 ellimc3apf 15334 dvfvalap 15355 dvcj 15383 dvexp 15385 dvmptclx 15392 dvmptaddx 15393 dvmptmulx 15394 isuhgrm 15871 isushgrm 15872 uhgreq12g 15876 isuhgropm 15881 uhgrun 15886 isupgren 15895 upgrop 15904 isumgren 15905 upgr1edc 15921 upgrun 15924 umgrun 15926 isuspgren 15955 isusgren 15956 isuspgropen 15962 isusgropen 15963 ausgrusgrben 15966 usgrstrrepeen 16029 wksfval 16035 |
| Copyright terms: Public domain | W3C validator |