| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 |
|
| Ref | Expression |
|---|---|
| dmeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 |
. 2
| |
| 2 | dmeq 4878 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-dm 4685 |
| This theorem is referenced by: rneq 4905 dmsnsnsng 5160 elxp4 5170 fndmin 5687 1stvalg 6228 fo1st 6243 f1stres 6245 errn 6642 xpassen 6925 xpdom2 6926 frecuzrdgtclt 10566 s1dmg 11079 swrdval 11101 swrd0g 11113 shftdm 11133 ennnfonelemg 12774 ennnfonelem1 12778 ennnfonelemhdmp1 12780 ennnfonelemkh 12783 ennnfonelemhf1o 12784 ennnfonelemex 12785 ennnfonelemhom 12786 isstruct2im 12842 isstruct2r 12843 setsvalg 12862 prdsval 13105 igsumvalx 13221 cnprcl2k 14678 psmetdmdm 14796 xmetdmdm 14828 blfvalps 14857 limccl 15131 ellimc3apf 15132 dvfvalap 15153 dvcj 15181 dvexp 15183 dvmptclx 15190 dvmptaddx 15191 dvmptmulx 15192 |
| Copyright terms: Public domain | W3C validator |