![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version |
Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dmeqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dmeq 4862 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-dm 4669 |
This theorem is referenced by: rneq 4889 dmsnsnsng 5143 elxp4 5153 fndmin 5665 1stvalg 6195 fo1st 6210 f1stres 6212 errn 6609 xpassen 6884 xpdom2 6885 frecuzrdgtclt 10492 shftdm 10966 ennnfonelemg 12560 ennnfonelem1 12564 ennnfonelemhdmp1 12566 ennnfonelemkh 12569 ennnfonelemhf1o 12570 ennnfonelemex 12571 ennnfonelemhom 12572 isstruct2im 12628 isstruct2r 12629 setsvalg 12648 igsumvalx 12972 cnprcl2k 14374 psmetdmdm 14492 xmetdmdm 14524 blfvalps 14553 limccl 14813 ellimc3apf 14814 dvfvalap 14835 dvcj 14858 dvexp 14860 dvmptclx 14865 dvmptaddx 14866 dvmptmulx 14867 |
Copyright terms: Public domain | W3C validator |