| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 |
|
| Ref | Expression |
|---|---|
| dmeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 |
. 2
| |
| 2 | dmeq 4897 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: rneq 4924 dmsnsnsng 5179 elxp4 5189 f10d 5579 fndmin 5710 1stvalg 6251 fo1st 6266 f1stres 6268 errn 6665 xpassen 6950 xpdom2 6951 frecuzrdgtclt 10603 s1dmg 11117 swrdval 11139 swrd0g 11151 shftdm 11248 ennnfonelemg 12889 ennnfonelem1 12893 ennnfonelemhdmp1 12895 ennnfonelemkh 12898 ennnfonelemhf1o 12899 ennnfonelemex 12900 ennnfonelemhom 12901 isstruct2im 12957 isstruct2r 12958 setsvalg 12977 prdsval 13220 igsumvalx 13336 cnprcl2k 14793 psmetdmdm 14911 xmetdmdm 14943 blfvalps 14972 limccl 15246 ellimc3apf 15247 dvfvalap 15268 dvcj 15296 dvexp 15298 dvmptclx 15305 dvmptaddx 15306 dvmptmulx 15307 isuhgrm 15782 isushgrm 15783 uhgreq12g 15787 isuhgropm 15792 uhgrun 15797 isupgren 15806 upgrop 15815 isumgren 15816 upgr1edc 15829 upgrun 15832 umgrun 15834 |
| Copyright terms: Public domain | W3C validator |