![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version |
Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dmeqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dmeq 4863 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-dm 4670 |
This theorem is referenced by: rneq 4890 dmsnsnsng 5144 elxp4 5154 fndmin 5666 1stvalg 6197 fo1st 6212 f1stres 6214 errn 6611 xpassen 6886 xpdom2 6887 frecuzrdgtclt 10495 shftdm 10969 ennnfonelemg 12563 ennnfonelem1 12567 ennnfonelemhdmp1 12569 ennnfonelemkh 12572 ennnfonelemhf1o 12573 ennnfonelemex 12574 ennnfonelemhom 12575 isstruct2im 12631 isstruct2r 12632 setsvalg 12651 igsumvalx 12975 cnprcl2k 14385 psmetdmdm 14503 xmetdmdm 14535 blfvalps 14564 limccl 14838 ellimc3apf 14839 dvfvalap 14860 dvcj 14888 dvexp 14890 dvmptclx 14897 dvmptaddx 14898 dvmptmulx 14899 |
Copyright terms: Public domain | W3C validator |