| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 |
|
| Ref | Expression |
|---|---|
| dmeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 |
. 2
| |
| 2 | dmeq 4866 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-dm 4673 |
| This theorem is referenced by: rneq 4893 dmsnsnsng 5147 elxp4 5157 fndmin 5669 1stvalg 6200 fo1st 6215 f1stres 6217 errn 6614 xpassen 6889 xpdom2 6890 frecuzrdgtclt 10513 shftdm 10987 ennnfonelemg 12620 ennnfonelem1 12624 ennnfonelemhdmp1 12626 ennnfonelemkh 12629 ennnfonelemhf1o 12630 ennnfonelemex 12631 ennnfonelemhom 12632 isstruct2im 12688 isstruct2r 12689 setsvalg 12708 igsumvalx 13032 cnprcl2k 14442 psmetdmdm 14560 xmetdmdm 14592 blfvalps 14621 limccl 14895 ellimc3apf 14896 dvfvalap 14917 dvcj 14945 dvexp 14947 dvmptclx 14954 dvmptaddx 14955 dvmptmulx 14956 |
| Copyright terms: Public domain | W3C validator |