| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version | ||
| Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
| Ref | Expression |
|---|---|
| dmeqd.1 |
|
| Ref | Expression |
|---|---|
| dmeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeqd.1 |
. 2
| |
| 2 | dmeq 4879 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: rneq 4906 dmsnsnsng 5161 elxp4 5171 fndmin 5689 1stvalg 6230 fo1st 6245 f1stres 6247 errn 6644 xpassen 6927 xpdom2 6928 frecuzrdgtclt 10568 s1dmg 11082 swrdval 11104 swrd0g 11116 shftdm 11166 ennnfonelemg 12807 ennnfonelem1 12811 ennnfonelemhdmp1 12813 ennnfonelemkh 12816 ennnfonelemhf1o 12817 ennnfonelemex 12818 ennnfonelemhom 12819 isstruct2im 12875 isstruct2r 12876 setsvalg 12895 prdsval 13138 igsumvalx 13254 cnprcl2k 14711 psmetdmdm 14829 xmetdmdm 14861 blfvalps 14890 limccl 15164 ellimc3apf 15165 dvfvalap 15186 dvcj 15214 dvexp 15216 dvmptclx 15223 dvmptaddx 15224 dvmptmulx 15225 |
| Copyright terms: Public domain | W3C validator |