Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmeqd | Unicode version |
Description: Equality deduction for domain. (Contributed by NM, 4-Mar-2004.) |
Ref | Expression |
---|---|
dmeqd.1 |
Ref | Expression |
---|---|
dmeqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeqd.1 | . 2 | |
2 | dmeq 4809 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cdm 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-dm 4619 |
This theorem is referenced by: rneq 4836 dmsnsnsng 5086 elxp4 5096 fndmin 5600 1stvalg 6118 fo1st 6133 f1stres 6135 errn 6531 xpassen 6804 xpdom2 6805 frecuzrdgtclt 10364 shftdm 10773 ennnfonelemg 12345 ennnfonelem1 12349 ennnfonelemhdmp1 12351 ennnfonelemkh 12354 ennnfonelemhf1o 12355 ennnfonelemex 12356 ennnfonelemhom 12357 isstruct2im 12413 isstruct2r 12414 setsvalg 12433 cnprcl2k 12921 psmetdmdm 13039 xmetdmdm 13071 blfvalps 13100 limccl 13343 ellimc3apf 13344 dvfvalap 13365 dvcj 13388 dvexp 13390 dvmptclx 13395 dvmptaddx 13396 dvmptmulx 13397 |
Copyright terms: Public domain | W3C validator |