ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnopg Unicode version

Theorem rnsnopg 5145
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 4671 . . 3  |-  ran  { <. A ,  B >. }  =  dom  `' { <. A ,  B >. }
2 dfdm4 4855 . . . 4  |-  dom  { <. B ,  A >. }  =  ran  `' { <. B ,  A >. }
3 df-rn 4671 . . . 4  |-  ran  `' { <. B ,  A >. }  =  dom  `' `' { <. B ,  A >. }
4 cnvcnvsn 5143 . . . . 5  |-  `' `' { <. B ,  A >. }  =  `' { <. A ,  B >. }
54dmeqi 4864 . . . 4  |-  dom  `' `' { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
62, 3, 53eqtri 2218 . . 3  |-  dom  { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
71, 6eqtr4i 2217 . 2  |-  ran  { <. A ,  B >. }  =  dom  { <. B ,  A >. }
8 dmsnopg 5138 . 2  |-  ( A  e.  V  ->  dom  {
<. B ,  A >. }  =  { B }
)
97, 8eqtrid 2238 1  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {csn 3619   <.cop 3622   `'ccnv 4659   dom cdm 4660   ran crn 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671
This theorem is referenced by:  rnpropg  5146  rnsnop  5147  fprg  5742
  Copyright terms: Public domain W3C validator