ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnopg Unicode version

Theorem rnsnopg 5107
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 4637 . . 3  |-  ran  { <. A ,  B >. }  =  dom  `' { <. A ,  B >. }
2 dfdm4 4819 . . . 4  |-  dom  { <. B ,  A >. }  =  ran  `' { <. B ,  A >. }
3 df-rn 4637 . . . 4  |-  ran  `' { <. B ,  A >. }  =  dom  `' `' { <. B ,  A >. }
4 cnvcnvsn 5105 . . . . 5  |-  `' `' { <. B ,  A >. }  =  `' { <. A ,  B >. }
54dmeqi 4828 . . . 4  |-  dom  `' `' { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
62, 3, 53eqtri 2202 . . 3  |-  dom  { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
71, 6eqtr4i 2201 . 2  |-  ran  { <. A ,  B >. }  =  dom  { <. B ,  A >. }
8 dmsnopg 5100 . 2  |-  ( A  e.  V  ->  dom  {
<. B ,  A >. }  =  { B }
)
97, 8eqtrid 2222 1  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {csn 3592   <.cop 3595   `'ccnv 4625   dom cdm 4626   ran crn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-xp 4632  df-rel 4633  df-cnv 4634  df-dm 4636  df-rn 4637
This theorem is referenced by:  rnpropg  5108  rnsnop  5109  fprg  5699
  Copyright terms: Public domain W3C validator