ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnopg Unicode version

Theorem rnsnopg 5089
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 4622 . . 3  |-  ran  { <. A ,  B >. }  =  dom  `' { <. A ,  B >. }
2 dfdm4 4803 . . . 4  |-  dom  { <. B ,  A >. }  =  ran  `' { <. B ,  A >. }
3 df-rn 4622 . . . 4  |-  ran  `' { <. B ,  A >. }  =  dom  `' `' { <. B ,  A >. }
4 cnvcnvsn 5087 . . . . 5  |-  `' `' { <. B ,  A >. }  =  `' { <. A ,  B >. }
54dmeqi 4812 . . . 4  |-  dom  `' `' { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
62, 3, 53eqtri 2195 . . 3  |-  dom  { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
71, 6eqtr4i 2194 . 2  |-  ran  { <. A ,  B >. }  =  dom  { <. B ,  A >. }
8 dmsnopg 5082 . 2  |-  ( A  e.  V  ->  dom  {
<. B ,  A >. }  =  { B }
)
97, 8eqtrid 2215 1  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {csn 3583   <.cop 3586   `'ccnv 4610   dom cdm 4611   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  rnpropg  5090  rnsnop  5091  fprg  5679
  Copyright terms: Public domain W3C validator