Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rnsnopg | Unicode version |
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
rnsnopg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4596 | . . 3 | |
2 | dfdm4 4777 | . . . 4 | |
3 | df-rn 4596 | . . . 4 | |
4 | cnvcnvsn 5061 | . . . . 5 | |
5 | 4 | dmeqi 4786 | . . . 4 |
6 | 2, 3, 5 | 3eqtri 2182 | . . 3 |
7 | 1, 6 | eqtr4i 2181 | . 2 |
8 | dmsnopg 5056 | . 2 | |
9 | 7, 8 | syl5eq 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 csn 3560 cop 3563 ccnv 4584 cdm 4585 crn 4586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-xp 4591 df-rel 4592 df-cnv 4593 df-dm 4595 df-rn 4596 |
This theorem is referenced by: rnpropg 5064 rnsnop 5065 fprg 5649 |
Copyright terms: Public domain | W3C validator |