ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnsnopg Unicode version

Theorem rnsnopg 5063
Description: The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
rnsnopg  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)

Proof of Theorem rnsnopg
StepHypRef Expression
1 df-rn 4596 . . 3  |-  ran  { <. A ,  B >. }  =  dom  `' { <. A ,  B >. }
2 dfdm4 4777 . . . 4  |-  dom  { <. B ,  A >. }  =  ran  `' { <. B ,  A >. }
3 df-rn 4596 . . . 4  |-  ran  `' { <. B ,  A >. }  =  dom  `' `' { <. B ,  A >. }
4 cnvcnvsn 5061 . . . . 5  |-  `' `' { <. B ,  A >. }  =  `' { <. A ,  B >. }
54dmeqi 4786 . . . 4  |-  dom  `' `' { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
62, 3, 53eqtri 2182 . . 3  |-  dom  { <. B ,  A >. }  =  dom  `' { <. A ,  B >. }
71, 6eqtr4i 2181 . 2  |-  ran  { <. A ,  B >. }  =  dom  { <. B ,  A >. }
8 dmsnopg 5056 . 2  |-  ( A  e.  V  ->  dom  {
<. B ,  A >. }  =  { B }
)
97, 8syl5eq 2202 1  |-  ( A  e.  V  ->  ran  {
<. A ,  B >. }  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   {csn 3560   <.cop 3563   `'ccnv 4584   dom cdm 4585   ran crn 4586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4591  df-rel 4592  df-cnv 4593  df-dm 4595  df-rn 4596
This theorem is referenced by:  rnpropg  5064  rnsnop  5065  fprg  5649
  Copyright terms: Public domain W3C validator