| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecqs | GIF version | ||
| Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.) |
| Ref | Expression |
|---|---|
| ecqs.1 | ⊢ 𝑅 ∈ V |
| Ref | Expression |
|---|---|
| ecqs | ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 6632 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | ecqs.1 | . . 3 ⊢ 𝑅 ∈ V | |
| 3 | uniqs 6690 | . . 3 ⊢ (𝑅 ∈ V → ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴})) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴}) |
| 5 | 1, 4 | eqtr4i 2230 | 1 ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3635 ∪ cuni 3853 “ cima 4683 [cec 6628 / cqs 6629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-xp 4686 df-cnv 4688 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-ec 6632 df-qs 6636 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |