Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecqs | GIF version |
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.) |
Ref | Expression |
---|---|
ecqs.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecqs | ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 6503 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | ecqs.1 | . . 3 ⊢ 𝑅 ∈ V | |
3 | uniqs 6559 | . . 3 ⊢ (𝑅 ∈ V → ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴})) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴}) |
5 | 1, 4 | eqtr4i 2189 | 1 ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 Vcvv 2726 {csn 3576 ∪ cuni 3789 “ cima 4607 [cec 6499 / cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |