ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelrn Unicode version

Theorem ovelrn 6025
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, F, y

Proof of Theorem ovelrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fnrnov 6022 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
21eleq2d 2247 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } ) )
3 elex 2750 . . . 4  |-  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  ->  C  e.  _V )
43a1i 9 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  ->  C  e.  _V ) )
5 fnovex 5910 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  x  e.  A  /\  y  e.  B )  ->  ( x F y )  e.  _V )
6 eleq1 2240 . . . . . 6  |-  ( C  =  ( x F y )  ->  ( C  e.  _V  <->  ( x F y )  e. 
_V ) )
75, 6syl5ibrcom 157 . . . . 5  |-  ( ( F  Fn  ( A  X.  B )  /\  x  e.  A  /\  y  e.  B )  ->  ( C  =  ( x F y )  ->  C  e.  _V ) )
873expb 1204 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( C  =  ( x F y )  ->  C  e.  _V )
)
98rexlimdvva 2602 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( E. x  e.  A  E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
)
10 eqeq1 2184 . . . . . 6  |-  ( z  =  C  ->  (
z  =  ( x F y )  <->  C  =  ( x F y ) ) )
11102rexbidv 2502 . . . . 5  |-  ( z  =  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x F y )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
1211elabg 2885 . . . 4  |-  ( C  e.  _V  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
1312a1i 9 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  _V  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) ) )
144, 9, 13pm5.21ndd 705 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
152, 14bitrd 188 1  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   _Vcvv 2739    X. cxp 4626   ran crn 4629    Fn wfn 5213  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880
This theorem is referenced by:  blrnps  13996  blrn  13997  tgioo  14131
  Copyright terms: Public domain W3C validator