ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelrn Unicode version

Theorem ovelrn 6067
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, F, y

Proof of Theorem ovelrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fnrnov 6064 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
21eleq2d 2263 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } ) )
3 elex 2771 . . . 4  |-  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  ->  C  e.  _V )
43a1i 9 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  ->  C  e.  _V ) )
5 fnovex 5951 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  x  e.  A  /\  y  e.  B )  ->  ( x F y )  e.  _V )
6 eleq1 2256 . . . . . 6  |-  ( C  =  ( x F y )  ->  ( C  e.  _V  <->  ( x F y )  e. 
_V ) )
75, 6syl5ibrcom 157 . . . . 5  |-  ( ( F  Fn  ( A  X.  B )  /\  x  e.  A  /\  y  e.  B )  ->  ( C  =  ( x F y )  ->  C  e.  _V ) )
873expb 1206 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( C  =  ( x F y )  ->  C  e.  _V )
)
98rexlimdvva 2619 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( E. x  e.  A  E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
)
10 eqeq1 2200 . . . . . 6  |-  ( z  =  C  ->  (
z  =  ( x F y )  <->  C  =  ( x F y ) ) )
11102rexbidv 2519 . . . . 5  |-  ( z  =  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x F y )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
1211elabg 2906 . . . 4  |-  ( C  e.  _V  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
1312a1i 9 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  _V  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) ) )
144, 9, 13pm5.21ndd 706 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
152, 14bitrd 188 1  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   _Vcvv 2760    X. cxp 4657   ran crn 4660    Fn wfn 5249  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921
This theorem is referenced by:  blrnps  14579  blrn  14580  tgioo  14714
  Copyright terms: Public domain W3C validator