ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelrn Unicode version

Theorem ovelrn 6154
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, F, y

Proof of Theorem ovelrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fnrnov 6151 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } )
21eleq2d 2299 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) } ) )
3 elex 2811 . . . 4  |-  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  ->  C  e.  _V )
43a1i 9 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  ->  C  e.  _V ) )
5 fnovex 6034 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  x  e.  A  /\  y  e.  B )  ->  ( x F y )  e.  _V )
6 eleq1 2292 . . . . . 6  |-  ( C  =  ( x F y )  ->  ( C  e.  _V  <->  ( x F y )  e. 
_V ) )
75, 6syl5ibrcom 157 . . . . 5  |-  ( ( F  Fn  ( A  X.  B )  /\  x  e.  A  /\  y  e.  B )  ->  ( C  =  ( x F y )  ->  C  e.  _V ) )
873expb 1228 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( C  =  ( x F y )  ->  C  e.  _V )
)
98rexlimdvva 2656 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( E. x  e.  A  E. y  e.  B  C  =  ( x F y )  ->  C  e.  _V )
)
10 eqeq1 2236 . . . . . 6  |-  ( z  =  C  ->  (
z  =  ( x F y )  <->  C  =  ( x F y ) ) )
11102rexbidv 2555 . . . . 5  |-  ( z  =  C  ->  ( E. x  e.  A  E. y  e.  B  z  =  ( x F y )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
1211elabg 2949 . . . 4  |-  ( C  e.  _V  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
1312a1i 9 . . 3  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  _V  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) ) )
144, 9, 13pm5.21ndd 710 . 2  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) }  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
152, 14bitrd 188 1  |-  ( F  Fn  ( A  X.  B )  ->  ( C  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  C  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    X. cxp 4717   ran crn 4720    Fn wfn 5313  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004
This theorem is referenced by:  blrnps  15085  blrn  15086  tgioo  15228
  Copyright terms: Public domain W3C validator