| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finds | Unicode version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 |
|
| finds.2 |
|
| finds.3 |
|
| finds.4 |
|
| finds.5 |
|
| finds.6 |
|
| Ref | Expression |
|---|---|
| finds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 |
. . . . 5
| |
| 2 | 0ex 4171 |
. . . . . 6
| |
| 3 | finds.1 |
. . . . . 6
| |
| 4 | 2, 3 | elab 2917 |
. . . . 5
|
| 5 | 1, 4 | mpbir 146 |
. . . 4
|
| 6 | finds.6 |
. . . . . 6
| |
| 7 | vex 2775 |
. . . . . . 7
| |
| 8 | finds.2 |
. . . . . . 7
| |
| 9 | 7, 8 | elab 2917 |
. . . . . 6
|
| 10 | 7 | sucex 4547 |
. . . . . . 7
|
| 11 | finds.3 |
. . . . . . 7
| |
| 12 | 10, 11 | elab 2917 |
. . . . . 6
|
| 13 | 6, 9, 12 | 3imtr4g 205 |
. . . . 5
|
| 14 | 13 | rgen 2559 |
. . . 4
|
| 15 | peano5 4646 |
. . . 4
| |
| 16 | 5, 14, 15 | mp2an 426 |
. . 3
|
| 17 | 16 | sseli 3189 |
. 2
|
| 18 | finds.4 |
. . 3
| |
| 19 | 18 | elabg 2919 |
. 2
|
| 20 | 17, 19 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: findes 4651 nn0suc 4652 elomssom 4653 ordom 4655 nndceq0 4666 0elnn 4667 omsinds 4670 nna0r 6564 nnm0r 6565 nnsucelsuc 6577 nneneq 6954 php5 6955 php5dom 6960 fidcenumlemrk 7056 fidcenumlemr 7057 nninfninc 7225 nnnninfeq 7230 nnnninfeq2 7231 frec2uzltd 10548 frecuzrdgg 10561 seq3val 10605 seqvalcd 10606 omgadd 10947 zfz1iso 10986 ennnfonelemhom 12786 nninfsellemdc 15947 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |