ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds Unicode version

Theorem finds 4614
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
finds.5  |-  ps
finds.6  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds  |-  ( A  e.  om  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5  |-  ps
2 0ex 4145 . . . . . 6  |-  (/)  e.  _V
3 finds.1 . . . . . 6  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
42, 3elab 2896 . . . . 5  |-  ( (/)  e.  { x  |  ph } 
<->  ps )
51, 4mpbir 146 . . . 4  |-  (/)  e.  {
x  |  ph }
6 finds.6 . . . . . 6  |-  ( y  e.  om  ->  ( ch  ->  th ) )
7 vex 2755 . . . . . . 7  |-  y  e. 
_V
8 finds.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
97, 8elab 2896 . . . . . 6  |-  ( y  e.  { x  | 
ph }  <->  ch )
107sucex 4513 . . . . . . 7  |-  suc  y  e.  _V
11 finds.3 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1210, 11elab 2896 . . . . . 6  |-  ( suc  y  e.  { x  |  ph }  <->  th )
136, 9, 123imtr4g 205 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )
1413rgen 2543 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ph }  ->  suc  y  e.  { x  |  ph }
)
15 peano5 4612 . . . 4  |-  ( (
(/)  e.  { x  |  ph }  /\  A. y  e.  om  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )  ->  om  C_  { x  |  ph } )
165, 14, 15mp2an 426 . . 3  |-  om  C_  { x  |  ph }
1716sseli 3166 . 2  |-  ( A  e.  om  ->  A  e.  { x  |  ph } )
18 finds.4 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
1918elabg 2898 . 2  |-  ( A  e.  om  ->  ( A  e.  { x  |  ph }  <->  ta )
)
2017, 19mpbid 147 1  |-  ( A  e.  om  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   A.wral 2468    C_ wss 3144   (/)c0 3437   suc csuc 4380   omcom 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-suc 4386  df-iom 4605
This theorem is referenced by:  findes  4617  nn0suc  4618  elomssom  4619  ordom  4621  nndceq0  4632  0elnn  4633  omsinds  4636  nna0r  6497  nnm0r  6498  nnsucelsuc  6510  nneneq  6875  php5  6876  php5dom  6881  fidcenumlemrk  6971  fidcenumlemr  6972  nnnninfeq  7144  nnnninfeq2  7145  frec2uzltd  10421  frecuzrdgg  10434  seq3val  10476  seqvalcd  10477  omgadd  10800  zfz1iso  10839  ennnfonelemhom  12434  nninfsellemdc  15157
  Copyright terms: Public domain W3C validator