ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finds Unicode version

Theorem finds 4584
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
finds.5  |-  ps
finds.6  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds  |-  ( A  e.  om  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5  |-  ps
2 0ex 4116 . . . . . 6  |-  (/)  e.  _V
3 finds.1 . . . . . 6  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
42, 3elab 2874 . . . . 5  |-  ( (/)  e.  { x  |  ph } 
<->  ps )
51, 4mpbir 145 . . . 4  |-  (/)  e.  {
x  |  ph }
6 finds.6 . . . . . 6  |-  ( y  e.  om  ->  ( ch  ->  th ) )
7 vex 2733 . . . . . . 7  |-  y  e. 
_V
8 finds.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
97, 8elab 2874 . . . . . 6  |-  ( y  e.  { x  | 
ph }  <->  ch )
107sucex 4483 . . . . . . 7  |-  suc  y  e.  _V
11 finds.3 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
1210, 11elab 2874 . . . . . 6  |-  ( suc  y  e.  { x  |  ph }  <->  th )
136, 9, 123imtr4g 204 . . . . 5  |-  ( y  e.  om  ->  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )
1413rgen 2523 . . . 4  |-  A. y  e.  om  ( y  e. 
{ x  |  ph }  ->  suc  y  e.  { x  |  ph }
)
15 peano5 4582 . . . 4  |-  ( (
(/)  e.  { x  |  ph }  /\  A. y  e.  om  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )  ->  om  C_  { x  |  ph } )
165, 14, 15mp2an 424 . . 3  |-  om  C_  { x  |  ph }
1716sseli 3143 . 2  |-  ( A  e.  om  ->  A  e.  { x  |  ph } )
18 finds.4 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
1918elabg 2876 . 2  |-  ( A  e.  om  ->  ( A  e.  { x  |  ph }  <->  ta )
)
2017, 19mpbid 146 1  |-  ( A  e.  om  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448    C_ wss 3121   (/)c0 3414   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  findes  4587  nn0suc  4588  elomssom  4589  ordom  4591  nndceq0  4602  0elnn  4603  omsinds  4606  nna0r  6457  nnm0r  6458  nnsucelsuc  6470  nneneq  6835  php5  6836  php5dom  6841  fidcenumlemrk  6931  fidcenumlemr  6932  nnnninfeq  7104  nnnninfeq2  7105  frec2uzltd  10359  frecuzrdgg  10372  seq3val  10414  seqvalcd  10415  omgadd  10737  zfz1iso  10776  ennnfonelemhom  12370  nninfsellemdc  14043
  Copyright terms: Public domain W3C validator