| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finds | Unicode version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 |
|
| finds.2 |
|
| finds.3 |
|
| finds.4 |
|
| finds.5 |
|
| finds.6 |
|
| Ref | Expression |
|---|---|
| finds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 |
. . . . 5
| |
| 2 | 0ex 4211 |
. . . . . 6
| |
| 3 | finds.1 |
. . . . . 6
| |
| 4 | 2, 3 | elab 2947 |
. . . . 5
|
| 5 | 1, 4 | mpbir 146 |
. . . 4
|
| 6 | finds.6 |
. . . . . 6
| |
| 7 | vex 2802 |
. . . . . . 7
| |
| 8 | finds.2 |
. . . . . . 7
| |
| 9 | 7, 8 | elab 2947 |
. . . . . 6
|
| 10 | 7 | sucex 4591 |
. . . . . . 7
|
| 11 | finds.3 |
. . . . . . 7
| |
| 12 | 10, 11 | elab 2947 |
. . . . . 6
|
| 13 | 6, 9, 12 | 3imtr4g 205 |
. . . . 5
|
| 14 | 13 | rgen 2583 |
. . . 4
|
| 15 | peano5 4690 |
. . . 4
| |
| 16 | 5, 14, 15 | mp2an 426 |
. . 3
|
| 17 | 16 | sseli 3220 |
. 2
|
| 18 | finds.4 |
. . 3
| |
| 19 | 18 | elabg 2949 |
. 2
|
| 20 | 17, 19 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: findes 4695 nn0suc 4696 elomssom 4697 ordom 4699 nndceq0 4710 0elnn 4711 omsinds 4714 nna0r 6624 nnm0r 6625 nnsucelsuc 6637 nneneq 7018 php5 7019 php5dom 7024 fidcenumlemrk 7121 fidcenumlemr 7122 nninfninc 7290 nnnninfeq 7295 nnnninfeq2 7296 frec2uzltd 10625 frecuzrdgg 10638 seq3val 10682 seqvalcd 10683 omgadd 11024 zfz1iso 11063 ennnfonelemhom 12986 nninfsellemdc 16376 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |