Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > finds | Unicode version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
finds.1 | |
finds.2 | |
finds.3 | |
finds.4 | |
finds.5 | |
finds.6 |
Ref | Expression |
---|---|
finds |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds.5 | . . . . 5 | |
2 | 0ex 4109 | . . . . . 6 | |
3 | finds.1 | . . . . . 6 | |
4 | 2, 3 | elab 2870 | . . . . 5 |
5 | 1, 4 | mpbir 145 | . . . 4 |
6 | finds.6 | . . . . . 6 | |
7 | vex 2729 | . . . . . . 7 | |
8 | finds.2 | . . . . . . 7 | |
9 | 7, 8 | elab 2870 | . . . . . 6 |
10 | 7 | sucex 4476 | . . . . . . 7 |
11 | finds.3 | . . . . . . 7 | |
12 | 10, 11 | elab 2870 | . . . . . 6 |
13 | 6, 9, 12 | 3imtr4g 204 | . . . . 5 |
14 | 13 | rgen 2519 | . . . 4 |
15 | peano5 4575 | . . . 4 | |
16 | 5, 14, 15 | mp2an 423 | . . 3 |
17 | 16 | sseli 3138 | . 2 |
18 | finds.4 | . . 3 | |
19 | 18 | elabg 2872 | . 2 |
20 | 17, 19 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 wss 3116 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: findes 4580 nn0suc 4581 elomssom 4582 ordom 4584 nndceq0 4595 0elnn 4596 omsinds 4599 nna0r 6446 nnm0r 6447 nnsucelsuc 6459 nneneq 6823 php5 6824 php5dom 6829 fidcenumlemrk 6919 fidcenumlemr 6920 nnnninfeq 7092 nnnninfeq2 7093 frec2uzltd 10338 frecuzrdgg 10351 seq3val 10393 seqvalcd 10394 omgadd 10715 zfz1iso 10754 ennnfonelemhom 12348 nninfsellemdc 13890 |
Copyright terms: Public domain | W3C validator |