| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finds | Unicode version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 |
|
| finds.2 |
|
| finds.3 |
|
| finds.4 |
|
| finds.5 |
|
| finds.6 |
|
| Ref | Expression |
|---|---|
| finds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 |
. . . . 5
| |
| 2 | 0ex 4187 |
. . . . . 6
| |
| 3 | finds.1 |
. . . . . 6
| |
| 4 | 2, 3 | elab 2924 |
. . . . 5
|
| 5 | 1, 4 | mpbir 146 |
. . . 4
|
| 6 | finds.6 |
. . . . . 6
| |
| 7 | vex 2779 |
. . . . . . 7
| |
| 8 | finds.2 |
. . . . . . 7
| |
| 9 | 7, 8 | elab 2924 |
. . . . . 6
|
| 10 | 7 | sucex 4565 |
. . . . . . 7
|
| 11 | finds.3 |
. . . . . . 7
| |
| 12 | 10, 11 | elab 2924 |
. . . . . 6
|
| 13 | 6, 9, 12 | 3imtr4g 205 |
. . . . 5
|
| 14 | 13 | rgen 2561 |
. . . 4
|
| 15 | peano5 4664 |
. . . 4
| |
| 16 | 5, 14, 15 | mp2an 426 |
. . 3
|
| 17 | 16 | sseli 3197 |
. 2
|
| 18 | finds.4 |
. . 3
| |
| 19 | 18 | elabg 2926 |
. 2
|
| 20 | 17, 19 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: findes 4669 nn0suc 4670 elomssom 4671 ordom 4673 nndceq0 4684 0elnn 4685 omsinds 4688 nna0r 6587 nnm0r 6588 nnsucelsuc 6600 nneneq 6979 php5 6980 php5dom 6985 fidcenumlemrk 7082 fidcenumlemr 7083 nninfninc 7251 nnnninfeq 7256 nnnninfeq2 7257 frec2uzltd 10585 frecuzrdgg 10598 seq3val 10642 seqvalcd 10643 omgadd 10984 zfz1iso 11023 ennnfonelemhom 12901 nninfsellemdc 16149 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |