ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2g Unicode version

Theorem eldm2g 4807
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Distinct variable groups:    y, A    y, B
Allowed substitution hint:    V( y)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 4806 . 2  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
2 df-br 3990 . . 3  |-  ( A B y  <->  <. A , 
y >.  e.  B )
32exbii 1598 . 2  |-  ( E. y  A B y  <->  E. y <. A ,  y
>.  e.  B )
41, 3bitrdi 195 1  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1485    e. wcel 2141   <.cop 3586   class class class wbr 3989   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  eldm2  4809  opeldmg  4816  dmfco  5564  releldm2  6164  tfrlem9  6298  climcau  11310  lmff  13043
  Copyright terms: Public domain W3C validator