ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2g Unicode version

Theorem eldm2g 4919
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Distinct variable groups:    y, A    y, B
Allowed substitution hint:    V( y)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 4918 . 2  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
2 df-br 4084 . . 3  |-  ( A B y  <->  <. A , 
y >.  e.  B )
32exbii 1651 . 2  |-  ( E. y  A B y  <->  E. y <. A ,  y
>.  e.  B )
41, 3bitrdi 196 1  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1538    e. wcel 2200   <.cop 3669   class class class wbr 4083   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-dm 4729
This theorem is referenced by:  eldm2  4921  opeldmg  4928  dmfco  5702  releldm2  6331  tfrlem9  6465  climcau  11858  lmff  14923
  Copyright terms: Public domain W3C validator