Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2g Unicode version

Theorem eldm2g 4703
 Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 4702 . 2
2 df-br 3898 . . 3
32exbii 1567 . 2
41, 3syl6bb 195 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wex 1451   wcel 1463  cop 3498   class class class wbr 3897   cdm 4507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-dm 4517 This theorem is referenced by:  eldm2  4705  opeldmg  4712  dmfco  5455  releldm2  6049  tfrlem9  6182  climcau  11056  lmff  12313
 Copyright terms: Public domain W3C validator