Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldm2g | Unicode version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldm2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 4806 | . 2 | |
2 | df-br 3990 | . . 3 | |
3 | 2 | exbii 1598 | . 2 |
4 | 1, 3 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wex 1485 wcel 2141 cop 3586 class class class wbr 3989 cdm 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-dm 4621 |
This theorem is referenced by: eldm2 4809 opeldmg 4816 dmfco 5564 releldm2 6164 tfrlem9 6298 climcau 11310 lmff 13043 |
Copyright terms: Public domain | W3C validator |