Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldm2g | GIF version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldm2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 4815 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
2 | df-br 3999 | . . 3 ⊢ (𝐴𝐵𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐵) | |
3 | 2 | exbii 1603 | . 2 ⊢ (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
4 | 1, 3 | bitrdi 196 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1490 ∈ wcel 2146 〈cop 3592 class class class wbr 3998 dom cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-dm 4630 |
This theorem is referenced by: eldm2 4818 opeldmg 4825 dmfco 5576 releldm2 6176 tfrlem9 6310 climcau 11321 lmff 13300 |
Copyright terms: Public domain | W3C validator |