ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2g GIF version

Theorem eldm2g 4816
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 4815 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
2 df-br 3999 . . 3 (𝐴𝐵𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐵)
32exbii 1603 . 2 (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
41, 3bitrdi 196 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wex 1490  wcel 2146  cop 3592   class class class wbr 3998  dom cdm 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-dm 4630
This theorem is referenced by:  eldm2  4818  opeldmg  4825  dmfco  5576  releldm2  6176  tfrlem9  6310  climcau  11321  lmff  13300
  Copyright terms: Public domain W3C validator