ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcau Unicode version

Theorem climcau 10700
Description: A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 10703). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcau  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcau
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4620 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. y <. F ,  y >.  e. 
~~>  ) )
21ibi 174 . . 3  |-  ( F  e.  dom  ~~>  ->  E. y <. F ,  y >.  e. 
~~>  )
3 df-br 3838 . . . . 5  |-  ( F  ~~>  y  <->  <. F ,  y
>.  e.  ~~>  )
4 climcau.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
5 simpll 496 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  M  e.  ZZ )
6 rphalfcl 9130 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
76adantl 271 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( x  /  2
)  e.  RR+ )
8 eqidd 2089 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  k  e.  Z
)  ->  ( F `  k )  =  ( F `  k ) )
9 simplr 497 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  F 
~~>  y )
104, 5, 7, 8, 9climi 10639 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) ) )
11 eluzelz 8997 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
12 uzid 9002 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1311, 12syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ( ZZ>= `  j )
)
1413, 4eleq2s 2182 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
1514adantl 271 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  j  e.  ( ZZ>= `  j )
)
16 fveq2 5289 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1716eleq1d 2156 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1816oveq1d 5649 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( F `  k
)  -  y )  =  ( ( F `
 j )  -  y ) )
1918fveq2d 5293 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( abs `  ( ( F `
 k )  -  y ) )  =  ( abs `  (
( F `  j
)  -  y ) ) )
2019breq1d 3847 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 )  <->  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )
2117, 20anbi12d 457 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  <-> 
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) ) ) )
2221rspcv 2718 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
2315, 22syl 14 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
24 rpre 9109 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2524ad2antlr 473 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  x  e.  RR )
26 simpllr 501 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  F  ~~>  y )
27 climcl 10634 . . . . . . . . . . . 12  |-  ( F  ~~>  y  ->  y  e.  CC )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  y  e.  CC )
29 simprl 498 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  k )  e.  CC )
30 simplrl 502 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  j )  e.  CC )
31 simpllr 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  y  e.  CC )
32 simplll 500 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  x  e.  RR )
33 simprr 499 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )
3431, 30abssubd 10591 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  y ) ) )
35 simplrr 503 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )
3634, 35eqbrtrd 3857 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  <  (
x  /  2 ) )
3729, 30, 31, 32, 33, 36abs3lemd 10599 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)
3837ex 113 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938ralimdv 2442 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039ex 113 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) )  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4140com23 77 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  j )  e.  CC  /\  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4225, 28, 41syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
4323, 42mpdd 40 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4443reximdva 2475 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4510, 44mpd 13 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
4645ralrimiva 2446 . . . . . 6  |-  ( ( M  e.  ZZ  /\  F 
~~>  y )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ex 113 . . . . 5  |-  ( M  e.  ZZ  ->  ( F 
~~>  y  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
483, 47syl5bir 151 . . . 4  |-  ( M  e.  ZZ  ->  ( <. F ,  y >.  e. 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
4948exlimdv 1747 . . 3  |-  ( M  e.  ZZ  ->  ( E. y <. F ,  y
>.  e.  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
502, 49syl5 32 . 2  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
5150imp 122 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   A.wral 2359   E.wrex 2360   <.cop 3444   class class class wbr 3837   dom cdm 4428   ` cfv 5002  (class class class)co 5634   CCcc 7327   RRcr 7328    < clt 7501    - cmin 7632    / cdiv 8113   2c2 8444   ZZcz 8720   ZZ>=cuz 8988   RR+crp 9103   abscabs 10395    ~~> cli 10630
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-clim 10631
This theorem is referenced by:  climcaucn  10704
  Copyright terms: Public domain W3C validator