ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcau Unicode version

Theorem climcau 11773
Description: A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11776). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcau  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcau
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4893 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. y <. F ,  y >.  e. 
~~>  ) )
21ibi 176 . . 3  |-  ( F  e.  dom  ~~>  ->  E. y <. F ,  y >.  e. 
~~>  )
3 df-br 4060 . . . . 5  |-  ( F  ~~>  y  <->  <. F ,  y
>.  e.  ~~>  )
4 climcau.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
5 simpll 527 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  M  e.  ZZ )
6 rphalfcl 9838 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
76adantl 277 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( x  /  2
)  e.  RR+ )
8 eqidd 2208 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  k  e.  Z
)  ->  ( F `  k )  =  ( F `  k ) )
9 simplr 528 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  F 
~~>  y )
104, 5, 7, 8, 9climi 11713 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) ) )
11 eluzelz 9692 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
12 uzid 9697 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1311, 12syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ( ZZ>= `  j )
)
1413, 4eleq2s 2302 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
1514adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  j  e.  ( ZZ>= `  j )
)
16 fveq2 5599 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1716eleq1d 2276 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1816oveq1d 5982 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( F `  k
)  -  y )  =  ( ( F `
 j )  -  y ) )
1918fveq2d 5603 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( abs `  ( ( F `
 k )  -  y ) )  =  ( abs `  (
( F `  j
)  -  y ) ) )
2019breq1d 4069 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 )  <->  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )
2117, 20anbi12d 473 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  <-> 
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) ) ) )
2221rspcv 2880 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
2315, 22syl 14 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
24 rpre 9817 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2524ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  x  e.  RR )
26 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  F  ~~>  y )
27 climcl 11708 . . . . . . . . . . . 12  |-  ( F  ~~>  y  ->  y  e.  CC )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  y  e.  CC )
29 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  k )  e.  CC )
30 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  j )  e.  CC )
31 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  y  e.  CC )
32 simplll 533 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  x  e.  RR )
33 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )
3431, 30abssubd 11619 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  y ) ) )
35 simplrr 536 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )
3634, 35eqbrtrd 4081 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  <  (
x  /  2 ) )
3729, 30, 31, 32, 33, 36abs3lemd 11627 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)
3837ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938ralimdv 2576 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039ex 115 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) )  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4140com23 78 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  j )  e.  CC  /\  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4225, 28, 41syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
4323, 42mpdd 41 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4443reximdva 2610 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4510, 44mpd 13 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
4645ralrimiva 2581 . . . . . 6  |-  ( ( M  e.  ZZ  /\  F 
~~>  y )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ex 115 . . . . 5  |-  ( M  e.  ZZ  ->  ( F 
~~>  y  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
483, 47biimtrrid 153 . . . 4  |-  ( M  e.  ZZ  ->  ( <. F ,  y >.  e. 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
4948exlimdv 1843 . . 3  |-  ( M  e.  ZZ  ->  ( E. y <. F ,  y
>.  e.  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
502, 49syl5 32 . 2  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
5150imp 124 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   <.cop 3646   class class class wbr 4059   dom cdm 4693   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959    < clt 8142    - cmin 8278    / cdiv 8780   2c2 9122   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   abscabs 11423    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by:  climcaucn  11777
  Copyright terms: Public domain W3C validator