| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climcau | Unicode version | ||
| Description: A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11632). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| climcau.1 |
|
| Ref | Expression |
|---|---|
| climcau |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldm2g 4873 |
. . . 4
| |
| 2 | 1 | ibi 176 |
. . 3
|
| 3 | df-br 4044 |
. . . . 5
| |
| 4 | climcau.1 |
. . . . . . . . 9
| |
| 5 | simpll 527 |
. . . . . . . . 9
| |
| 6 | rphalfcl 9802 |
. . . . . . . . . 10
| |
| 7 | 6 | adantl 277 |
. . . . . . . . 9
|
| 8 | eqidd 2205 |
. . . . . . . . 9
| |
| 9 | simplr 528 |
. . . . . . . . 9
| |
| 10 | 4, 5, 7, 8, 9 | climi 11569 |
. . . . . . . 8
|
| 11 | eluzelz 9656 |
. . . . . . . . . . . . . 14
| |
| 12 | uzid 9661 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . . . . 13
|
| 14 | 13, 4 | eleq2s 2299 |
. . . . . . . . . . . 12
|
| 15 | 14 | adantl 277 |
. . . . . . . . . . 11
|
| 16 | fveq2 5575 |
. . . . . . . . . . . . . 14
| |
| 17 | 16 | eleq1d 2273 |
. . . . . . . . . . . . 13
|
| 18 | 16 | oveq1d 5958 |
. . . . . . . . . . . . . . 15
|
| 19 | 18 | fveq2d 5579 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | breq1d 4053 |
. . . . . . . . . . . . 13
|
| 21 | 17, 20 | anbi12d 473 |
. . . . . . . . . . . 12
|
| 22 | 21 | rspcv 2872 |
. . . . . . . . . . 11
|
| 23 | 15, 22 | syl 14 |
. . . . . . . . . 10
|
| 24 | rpre 9781 |
. . . . . . . . . . . 12
| |
| 25 | 24 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 26 | simpllr 534 |
. . . . . . . . . . . 12
| |
| 27 | climcl 11564 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | syl 14 |
. . . . . . . . . . 11
|
| 29 | simprl 529 |
. . . . . . . . . . . . . . . 16
| |
| 30 | simplrl 535 |
. . . . . . . . . . . . . . . 16
| |
| 31 | simpllr 534 |
. . . . . . . . . . . . . . . 16
| |
| 32 | simplll 533 |
. . . . . . . . . . . . . . . 16
| |
| 33 | simprr 531 |
. . . . . . . . . . . . . . . 16
| |
| 34 | 31, 30 | abssubd 11475 |
. . . . . . . . . . . . . . . . 17
|
| 35 | simplrr 536 |
. . . . . . . . . . . . . . . . 17
| |
| 36 | 34, 35 | eqbrtrd 4065 |
. . . . . . . . . . . . . . . 16
|
| 37 | 29, 30, 31, 32, 33, 36 | abs3lemd 11483 |
. . . . . . . . . . . . . . 15
|
| 38 | 37 | ex 115 |
. . . . . . . . . . . . . 14
|
| 39 | 38 | ralimdv 2573 |
. . . . . . . . . . . . 13
|
| 40 | 39 | ex 115 |
. . . . . . . . . . . 12
|
| 41 | 40 | com23 78 |
. . . . . . . . . . 11
|
| 42 | 25, 28, 41 | syl2anc 411 |
. . . . . . . . . 10
|
| 43 | 23, 42 | mpdd 41 |
. . . . . . . . 9
|
| 44 | 43 | reximdva 2607 |
. . . . . . . 8
|
| 45 | 10, 44 | mpd 13 |
. . . . . . 7
|
| 46 | 45 | ralrimiva 2578 |
. . . . . 6
|
| 47 | 46 | ex 115 |
. . . . 5
|
| 48 | 3, 47 | biimtrrid 153 |
. . . 4
|
| 49 | 48 | exlimdv 1841 |
. . 3
|
| 50 | 2, 49 | syl5 32 |
. 2
|
| 51 | 50 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-seqfrec 10591 df-exp 10682 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 df-clim 11561 |
| This theorem is referenced by: climcaucn 11633 |
| Copyright terms: Public domain | W3C validator |