ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm Unicode version

Theorem eldm 4864
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
eldm.1  |-  A  e. 
_V
Assertion
Ref Expression
eldm  |-  ( A  e.  dom  B  <->  E. y  A B y )
Distinct variable groups:    y, A    y, B

Proof of Theorem eldm
StepHypRef Expression
1 eldm.1 . 2  |-  A  e. 
_V
2 eldmg 4862 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
31, 2ax-mp 5 1  |-  ( A  e.  dom  B  <->  E. y  A B y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1506    e. wcel 2167   _Vcvv 2763   class class class wbr 4034   dom cdm 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-dm 4674
This theorem is referenced by:  dmi  4882  dmcoss  4936  dmcosseq  4938  dminss  5085  dmsnm  5136  dffun7  5286  dffun8  5287  fnres  5377  fndmdif  5670  reldmtpos  6320  dmtpos  6323  tfrexlem  6401
  Copyright terms: Public domain W3C validator