ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm Unicode version

Theorem eldm 4859
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
eldm.1  |-  A  e. 
_V
Assertion
Ref Expression
eldm  |-  ( A  e.  dom  B  <->  E. y  A B y )
Distinct variable groups:    y, A    y, B

Proof of Theorem eldm
StepHypRef Expression
1 eldm.1 . 2  |-  A  e. 
_V
2 eldmg 4857 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
31, 2ax-mp 5 1  |-  ( A  e.  dom  B  <->  E. y  A B y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1503    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-dm 4669
This theorem is referenced by:  dmi  4877  dmcoss  4931  dmcosseq  4933  dminss  5080  dmsnm  5131  dffun7  5281  dffun8  5282  fnres  5370  fndmdif  5663  reldmtpos  6306  dmtpos  6309  tfrexlem  6387
  Copyright terms: Public domain W3C validator