ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixpconst Unicode version

Theorem elixpconst 6851
Description: Membership in an infinite Cartesian product of a constant  B. (Contributed by NM, 12-Apr-2008.)
Hypothesis
Ref Expression
elixp.1  |-  F  e. 
_V
Assertion
Ref Expression
elixpconst  |-  ( F  e.  X_ x  e.  A  B 
<->  F : A --> B )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem elixpconst
StepHypRef Expression
1 elixp.1 . . 3  |-  F  e. 
_V
21elixp 6850 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
3 ffnfv 5792 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
42, 3bitr4i 187 1  |-  ( F  e.  X_ x  e.  A  B 
<->  F : A --> B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   A.wral 2508   _Vcvv 2799    Fn wfn 5312   -->wf 5313   ` cfv 5317   X_cixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ixp 6844
This theorem is referenced by:  ixpconstg  6852
  Copyright terms: Public domain W3C validator