ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixp Unicode version

Theorem elixp 6850
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1  |-  F  e. 
_V
Assertion
Ref Expression
elixp  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 6847 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 elixp.1 . . 3  |-  F  e. 
_V
3 3anass 1006 . . 3  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
42, 3mpbiran 946 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4bitri 184 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   A.wral 2508   _Vcvv 2799    Fn wfn 5312   ` cfv 5317   X_cixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ixp 6844
This theorem is referenced by:  elixpconst  6851  ixpin  6868  ixpiinm  6869  elixpsn  6880
  Copyright terms: Public domain W3C validator