ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpconstg Unicode version

Theorem ixpconstg 6697
Description: Infinite Cartesian product of a constant  B. (Contributed by Mario Carneiro, 11-Jan-2015.)
Assertion
Ref Expression
ixpconstg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem ixpconstg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . 5  |-  f  e. 
_V
21elixpconst 6696 . . . 4  |-  ( f  e.  X_ x  e.  A  B 
<->  f : A --> B )
32abbi2i 2290 . . 3  |-  X_ x  e.  A  B  =  { f  |  f : A --> B }
4 mapvalg 6648 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  ^m  A
)  =  { f  |  f : A --> B } )
53, 4eqtr4id 2227 . 2  |-  ( ( B  e.  W  /\  A  e.  V )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
65ancoms 268 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   {cab 2161   -->wf 5204  (class class class)co 5865    ^m cmap 6638   X_cixp 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-map 6640  df-ixp 6689
This theorem is referenced by:  ixpconst  6698  mapsnf1o  6727
  Copyright terms: Public domain W3C validator