ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpconstg Unicode version

Theorem ixpconstg 6817
Description: Infinite Cartesian product of a constant  B. (Contributed by Mario Carneiro, 11-Jan-2015.)
Assertion
Ref Expression
ixpconstg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem ixpconstg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . 5  |-  f  e. 
_V
21elixpconst 6816 . . . 4  |-  ( f  e.  X_ x  e.  A  B 
<->  f : A --> B )
32abbi2i 2322 . . 3  |-  X_ x  e.  A  B  =  { f  |  f : A --> B }
4 mapvalg 6768 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  ^m  A
)  =  { f  |  f : A --> B } )
53, 4eqtr4id 2259 . 2  |-  ( ( B  e.  W  /\  A  e.  V )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
65ancoms 268 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
X_ x  e.  A  B  =  ( B  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   -->wf 5286  (class class class)co 5967    ^m cmap 6758   X_cixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-ixp 6809
This theorem is referenced by:  ixpconst  6818  mapsnf1o  6847  pwsbas  13239
  Copyright terms: Public domain W3C validator