ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elong GIF version

Theorem elong 4405
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))

Proof of Theorem elong
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeq 4404 . 2 (𝑥 = 𝐴 → (Ord 𝑥 ↔ Ord 𝐴))
2 df-on 4400 . 2 On = {𝑥 ∣ Ord 𝑥}
31, 2elab2g 2908 1 (𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164  Ord word 4394  Oncon0 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3160  df-ss 3167  df-uni 3837  df-tr 4129  df-iord 4398  df-on 4400
This theorem is referenced by:  elon  4406  eloni  4407  elon2  4408  ordelon  4415  onin  4418  limelon  4431  ssonuni  4521  onsuc  4534  onsucb  4536  onintonm  4550  onprc  4585  omelon2  4641  bj-nnelon  15521
  Copyright terms: Public domain W3C validator