ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzf Unicode version

Theorem uzf 9490
Description: The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf  |-  ZZ>= : ZZ --> ~P ZZ

Proof of Theorem uzf
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3232 . . . 4  |-  { k  e.  ZZ  |  j  <_  k }  C_  ZZ
2 zex 9221 . . . . 5  |-  ZZ  e.  _V
32elpw2 4143 . . . 4  |-  ( { k  e.  ZZ  | 
j  <_  k }  e.  ~P ZZ  <->  { k  e.  ZZ  |  j  <_ 
k }  C_  ZZ )
41, 3mpbir 145 . . 3  |-  { k  e.  ZZ  |  j  <_  k }  e.  ~P ZZ
54rgenw 2525 . 2  |-  A. j  e.  ZZ  { k  e.  ZZ  |  j  <_ 
k }  e.  ~P ZZ
6 df-uz 9488 . . 3  |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  | 
j  <_  k }
)
76fmpt 5646 . 2  |-  ( A. j  e.  ZZ  { k  e.  ZZ  |  j  <_  k }  e.  ~P ZZ  <->  ZZ>= : ZZ --> ~P ZZ )
85, 7mpbi 144 1  |-  ZZ>= : ZZ --> ~P ZZ
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   A.wral 2448   {crab 2452    C_ wss 3121   ~Pcpw 3566   class class class wbr 3989   -->wf 5194    <_ cle 7955   ZZcz 9212   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-neg 8093  df-z 9213  df-uz 9488
This theorem is referenced by:  eluzel2  9492  uzn0  9502  uzin2  10951  rexanuz  10952  climmpt  11263  lmbr2  13008  lmff  13043
  Copyright terms: Public domain W3C validator