| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemcl | Unicode version | ||
| Description: Lemma for cauappcvgpr 7790. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cauappcvgpr.f |
. . . 4
| |
| 2 | cauappcvgpr.app |
. . . 4
| |
| 3 | cauappcvgpr.bnd |
. . . 4
| |
| 4 | cauappcvgpr.lim |
. . . 4
| |
| 5 | 1, 2, 3, 4 | cauappcvgprlemm 7773 |
. . 3
|
| 6 | ssrab2 3282 |
. . . . . 6
| |
| 7 | nqex 7491 |
. . . . . . 7
| |
| 8 | 7 | elpw2 4208 |
. . . . . 6
|
| 9 | 6, 8 | mpbir 146 |
. . . . 5
|
| 10 | ssrab2 3282 |
. . . . . 6
| |
| 11 | 7 | elpw2 4208 |
. . . . . 6
|
| 12 | 10, 11 | mpbir 146 |
. . . . 5
|
| 13 | opelxpi 4714 |
. . . . 5
| |
| 14 | 9, 12, 13 | mp2an 426 |
. . . 4
|
| 15 | 4, 14 | eqeltri 2279 |
. . 3
|
| 16 | 5, 15 | jctil 312 |
. 2
|
| 17 | 1, 2, 3, 4 | cauappcvgprlemrnd 7778 |
. . 3
|
| 18 | 1, 2, 3, 4 | cauappcvgprlemdisj 7779 |
. . 3
|
| 19 | 1, 2, 3, 4 | cauappcvgprlemloc 7780 |
. . 3
|
| 20 | 17, 18, 19 | 3jca 1180 |
. 2
|
| 21 | elnp1st2nd 7604 |
. 2
| |
| 22 | 16, 20, 21 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-eprel 4343 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-1o 6514 df-oadd 6518 df-omul 6519 df-er 6632 df-ec 6634 df-qs 6638 df-ni 7432 df-pli 7433 df-mi 7434 df-lti 7435 df-plpq 7472 df-mpq 7473 df-enq 7475 df-nqqs 7476 df-plqqs 7477 df-mqqs 7478 df-1nqqs 7479 df-rq 7480 df-ltnqqs 7481 df-inp 7594 |
| This theorem is referenced by: cauappcvgprlemladdfu 7782 cauappcvgprlemladdfl 7783 cauappcvgprlemladdru 7784 cauappcvgprlemladdrl 7785 cauappcvgprlemladd 7786 cauappcvgprlem1 7787 cauappcvgprlem2 7788 cauappcvgpr 7790 |
| Copyright terms: Public domain | W3C validator |