| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > recexprlempr | Unicode version | ||
| Description:  | 
| Ref | Expression | 
|---|---|
| recexpr.1 | 
 | 
| Ref | Expression | 
|---|---|
| recexprlempr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recexpr.1 | 
. . . 4
 | |
| 2 | 1 | recexprlemm 7691 | 
. . 3
 | 
| 3 | ltrelnq 7432 | 
. . . . . . . . . . 11
 | |
| 4 | 3 | brel 4715 | 
. . . . . . . . . 10
 | 
| 5 | 4 | simpld 112 | 
. . . . . . . . 9
 | 
| 6 | 5 | adantr 276 | 
. . . . . . . 8
 | 
| 7 | 6 | exlimiv 1612 | 
. . . . . . 7
 | 
| 8 | 7 | abssi 3258 | 
. . . . . 6
 | 
| 9 | nqex 7430 | 
. . . . . . 7
 | |
| 10 | 9 | elpw2 4190 | 
. . . . . 6
 | 
| 11 | 8, 10 | mpbir 146 | 
. . . . 5
 | 
| 12 | 3 | brel 4715 | 
. . . . . . . . . 10
 | 
| 13 | 12 | simprd 114 | 
. . . . . . . . 9
 | 
| 14 | 13 | adantr 276 | 
. . . . . . . 8
 | 
| 15 | 14 | exlimiv 1612 | 
. . . . . . 7
 | 
| 16 | 15 | abssi 3258 | 
. . . . . 6
 | 
| 17 | 9 | elpw2 4190 | 
. . . . . 6
 | 
| 18 | 16, 17 | mpbir 146 | 
. . . . 5
 | 
| 19 | opelxpi 4695 | 
. . . . 5
 | |
| 20 | 11, 18, 19 | mp2an 426 | 
. . . 4
 | 
| 21 | 1, 20 | eqeltri 2269 | 
. . 3
 | 
| 22 | 2, 21 | jctil 312 | 
. 2
 | 
| 23 | 1 | recexprlemrnd 7696 | 
. . 3
 | 
| 24 | 1 | recexprlemdisj 7697 | 
. . 3
 | 
| 25 | 1 | recexprlemloc 7698 | 
. . 3
 | 
| 26 | 23, 24, 25 | 3jca 1179 | 
. 2
 | 
| 27 | elnp1st2nd 7543 | 
. 2
 | |
| 28 | 22, 26, 27 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 | 
| This theorem is referenced by: recexprlem1ssl 7700 recexprlem1ssu 7701 recexprlemss1l 7702 recexprlemss1u 7703 recexprlemex 7704 recexpr 7705 | 
| Copyright terms: Public domain | W3C validator |