ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlempr Unicode version

Theorem recexprlempr 7433
Description:  B is a positive real. Lemma for recexpr 7439. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlempr  |-  ( A  e.  P.  ->  B  e.  P. )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlempr
Dummy variables  r  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . 4  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlemm 7425 . . 3  |-  ( A  e.  P.  ->  ( E. q  e.  Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B
) ) )
3 ltrelnq 7166 . . . . . . . . . . 11  |-  <Q  C_  ( Q.  X.  Q. )
43brel 4586 . . . . . . . . . 10  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
54simpld 111 . . . . . . . . 9  |-  ( x 
<Q  y  ->  x  e. 
Q. )
65adantr 274 . . . . . . . 8  |-  ( ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) )  ->  x  e.  Q. )
76exlimiv 1577 . . . . . . 7  |-  ( E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
87abssi 3167 . . . . . 6  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q.
9 nqex 7164 . . . . . . 7  |-  Q.  e.  _V
109elpw2 4077 . . . . . 6  |-  ( { x  |  E. y
( x  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) }  e.  ~P Q.  <->  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  C_  Q. )
118, 10mpbir 145 . . . . 5  |-  { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) }  e.  ~P Q.
123brel 4586 . . . . . . . . . 10  |-  ( y 
<Q  x  ->  ( y  e.  Q.  /\  x  e.  Q. ) )
1312simprd 113 . . . . . . . . 9  |-  ( y 
<Q  x  ->  x  e. 
Q. )
1413adantr 274 . . . . . . . 8  |-  ( ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  x  e.  Q. )
1514exlimiv 1577 . . . . . . 7  |-  ( E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  x  e.  Q. )
1615abssi 3167 . . . . . 6  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q.
179elpw2 4077 . . . . . 6  |-  ( { x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }  e.  ~P Q.  <->  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  C_  Q. )
1816, 17mpbir 145 . . . . 5  |-  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  ~P Q.
19 opelxpi 4566 . . . . 5  |-  ( ( { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) }  e.  ~P Q.  /\  { x  |  E. y ( y 
<Q  x  /\  ( *Q `  y )  e.  ( 1st `  A
) ) }  e.  ~P Q. )  ->  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )
2011, 18, 19mp2an 422 . . . 4  |-  <. { x  |  E. y ( x 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) } ,  { x  |  E. y ( y  <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.  e.  ( ~P Q.  X.  ~P Q. )
211, 20eqeltri 2210 . . 3  |-  B  e.  ( ~P Q.  X.  ~P Q. )
222, 21jctil 310 . 2  |-  ( A  e.  P.  ->  ( B  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  B )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) ) )
231recexprlemrnd 7430 . . 3  |-  ( A  e.  P.  ->  ( A. q  e.  Q.  ( q  e.  ( 1st `  B )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
241recexprlemdisj 7431 . . 3  |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B
)  /\  q  e.  ( 2nd `  B ) ) )
251recexprlemloc 7432 . . 3  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
2623, 24, 253jca 1161 . 2  |-  ( A  e.  P.  ->  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  B
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) ) )
27 elnp1st2nd 7277 . 2  |-  ( B  e.  P.  <->  ( ( B  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  B )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  B ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  B
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) ) ) )
2822, 26, 27sylanbrc 413 1  |-  ( A  e.  P.  ->  B  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2123   A.wral 2414   E.wrex 2415    C_ wss 3066   ~Pcpw 3505   <.cop 3525   class class class wbr 3924    X. cxp 4532   ` cfv 5118   1stc1st 6029   2ndc2nd 6030   Q.cnq 7081   *Qcrq 7085    <Q cltq 7086   P.cnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  recexprlem1ssl  7434  recexprlem1ssu  7435  recexprlemss1l  7436  recexprlemss1u  7437  recexprlemex  7438  recexpr  7439
  Copyright terms: Public domain W3C validator