ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlempr Unicode version

Theorem ltexprlempr 7607
Description: Our constructed difference is a positive real. Lemma for ltexpri 7612. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlempr  |-  ( A 
<P  B  ->  C  e. 
P. )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlempr
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . 4  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemm 7599 . . 3  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
3 ssrab2 3241 . . . . . 6  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  C_  Q.
4 nqex 7362 . . . . . . 7  |-  Q.  e.  _V
54elpw2 4158 . . . . . 6  |-  ( { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q. 
<->  { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  C_  Q. )
63, 5mpbir 146 . . . . 5  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q.
7 ssrab2 3241 . . . . . 6  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  C_  Q.
84elpw2 4158 . . . . . 6  |-  ( { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q. 
<->  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  C_  Q. )
97, 8mpbir 146 . . . . 5  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q.
10 opelxpi 4659 . . . . 5  |-  ( ( { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q.  /\  { x  e. 
Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q. )  ->  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )
116, 9, 10mp2an 426 . . . 4  |-  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.  e.  ( ~P Q.  X.  ~P Q. )
121, 11eqeltri 2250 . . 3  |-  C  e.  ( ~P Q.  X.  ~P Q. )
132, 12jctil 312 . 2  |-  ( A 
<P  B  ->  ( C  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  C )  /\  E. r  e.  Q.  r  e.  ( 2nd `  C
) ) ) )
141ltexprlemrnd 7604 . . 3  |-  ( A 
<P  B  ->  ( A. q  e.  Q.  (
q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  (
r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) ) ) )
151ltexprlemdisj 7605 . . 3  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
161ltexprlemloc 7606 . . 3  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
1714, 15, 163jca 1177 . 2  |-  ( A 
<P  B  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) ) )
18 elnp1st2nd 7475 . 2  |-  ( C  e.  P.  <->  ( ( C  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  C )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  C ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  C
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) ) ) )
1913, 17, 18sylanbrc 417 1  |-  ( A 
<P  B  ->  C  e. 
P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3130   ~Pcpw 3576   <.cop 3596   class class class wbr 4004    X. cxp 4625   ` cfv 5217  (class class class)co 5875   1stc1st 6139   2ndc2nd 6140   Q.cnq 7279    +Q cplq 7281    <Q cltq 7284   P.cnp 7290    <P cltp 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-iltp 7469
This theorem is referenced by:  ltexprlemfl  7608  ltexprlemrl  7609  ltexprlemfu  7610  ltexprlemru  7611  ltexpri  7612
  Copyright terms: Public domain W3C validator