ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlempr Unicode version

Theorem ltexprlempr 7723
Description: Our constructed difference is a positive real. Lemma for ltexpri 7728. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlempr  |-  ( A 
<P  B  ->  C  e. 
P. )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlempr
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . 4  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemm 7715 . . 3  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
3 ssrab2 3278 . . . . . 6  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  C_  Q.
4 nqex 7478 . . . . . . 7  |-  Q.  e.  _V
54elpw2 4202 . . . . . 6  |-  ( { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q. 
<->  { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  C_  Q. )
63, 5mpbir 146 . . . . 5  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q.
7 ssrab2 3278 . . . . . 6  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  C_  Q.
84elpw2 4202 . . . . . 6  |-  ( { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q. 
<->  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  C_  Q. )
97, 8mpbir 146 . . . . 5  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q.
10 opelxpi 4708 . . . . 5  |-  ( ( { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q.  /\  { x  e. 
Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q. )  ->  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )
116, 9, 10mp2an 426 . . . 4  |-  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.  e.  ( ~P Q.  X.  ~P Q. )
121, 11eqeltri 2278 . . 3  |-  C  e.  ( ~P Q.  X.  ~P Q. )
132, 12jctil 312 . 2  |-  ( A 
<P  B  ->  ( C  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  C )  /\  E. r  e.  Q.  r  e.  ( 2nd `  C
) ) ) )
141ltexprlemrnd 7720 . . 3  |-  ( A 
<P  B  ->  ( A. q  e.  Q.  (
q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  (
r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) ) ) )
151ltexprlemdisj 7721 . . 3  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
161ltexprlemloc 7722 . . 3  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
1714, 15, 163jca 1180 . 2  |-  ( A 
<P  B  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) ) )
18 elnp1st2nd 7591 . 2  |-  ( C  e.  P.  <->  ( ( C  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  C )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  C ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  C
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) ) ) )
1913, 17, 18sylanbrc 417 1  |-  ( A 
<P  B  ->  C  e. 
P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166   ~Pcpw 3616   <.cop 3636   class class class wbr 4045    X. cxp 4674   ` cfv 5272  (class class class)co 5946   1stc1st 6226   2ndc2nd 6227   Q.cnq 7395    +Q cplq 7397    <Q cltq 7400   P.cnp 7406    <P cltp 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-iltp 7585
This theorem is referenced by:  ltexprlemfl  7724  ltexprlemrl  7725  ltexprlemfu  7726  ltexprlemru  7727  ltexpri  7728
  Copyright terms: Public domain W3C validator