ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlempr Unicode version

Theorem ltexprlempr 7795
Description: Our constructed difference is a positive real. Lemma for ltexpri 7800. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlempr  |-  ( A 
<P  B  ->  C  e. 
P. )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem ltexprlempr
Dummy variables  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . 4  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemm 7787 . . 3  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
3 ssrab2 3309 . . . . . 6  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  C_  Q.
4 nqex 7550 . . . . . . 7  |-  Q.  e.  _V
54elpw2 4241 . . . . . 6  |-  ( { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q. 
<->  { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  C_  Q. )
63, 5mpbir 146 . . . . 5  |-  { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q.
7 ssrab2 3309 . . . . . 6  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  C_  Q.
84elpw2 4241 . . . . . 6  |-  ( { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q. 
<->  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  C_  Q. )
97, 8mpbir 146 . . . . 5  |-  { x  e.  Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q.
10 opelxpi 4751 . . . . 5  |-  ( ( { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) }  e.  ~P Q.  /\  { x  e. 
Q.  |  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) }  e.  ~P Q. )  ->  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.  e.  ( ~P Q.  X.  ~P Q. ) )
116, 9, 10mp2an 426 . . . 4  |-  <. { x  e.  Q.  |  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.  e.  ( ~P Q.  X.  ~P Q. )
121, 11eqeltri 2302 . . 3  |-  C  e.  ( ~P Q.  X.  ~P Q. )
132, 12jctil 312 . 2  |-  ( A 
<P  B  ->  ( C  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e.  Q.  q  e.  ( 1st `  C )  /\  E. r  e.  Q.  r  e.  ( 2nd `  C
) ) ) )
141ltexprlemrnd 7792 . . 3  |-  ( A 
<P  B  ->  ( A. q  e.  Q.  (
q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  (
r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) ) ) )
151ltexprlemdisj 7793 . . 3  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
161ltexprlemloc 7794 . . 3  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
1714, 15, 163jca 1201 . 2  |-  ( A 
<P  B  ->  ( ( A. q  e.  Q.  ( q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) ) )
18 elnp1st2nd 7663 . 2  |-  ( C  e.  P.  <->  ( ( C  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. q  e. 
Q.  q  e.  ( 1st `  C )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  C ) ) )  /\  (
( A. q  e. 
Q.  ( q  e.  ( 1st `  C
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )  /\  A. q  e.  Q.  -.  (
q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  /\  A. q  e.  Q.  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) ) ) )
1913, 17, 18sylanbrc 417 1  |-  ( A 
<P  B  ->  C  e. 
P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   ~Pcpw 3649   <.cop 3669   class class class wbr 4083    X. cxp 4717   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    +Q cplq 7469    <Q cltq 7472   P.cnp 7478    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iltp 7657
This theorem is referenced by:  ltexprlemfl  7796  ltexprlemrl  7797  ltexprlemfu  7798  ltexprlemru  7799  ltexpri  7800
  Copyright terms: Public domain W3C validator