ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsdm Unicode version

Theorem ecelqsdm 6630
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
Assertion
Ref Expression
ecelqsdm  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  A )

Proof of Theorem ecelqsdm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elqsn0m 6628 . . 3  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  E. x  x  e.  [ B ] R )
2 ecdmn0m 6602 . . 3  |-  ( B  e.  dom  R  <->  E. x  x  e.  [ B ] R )
31, 2sylibr 134 . 2  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  dom  R )
4 simpl 109 . 2  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  dom  R  =  A )
53, 4eleqtrd 2268 1  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   dom cdm 4644   [cec 6556   /.cqs 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-ec 6560  df-qs 6564
This theorem is referenced by:  th3qlem1  6662  nnnq0lem1  7474  prsrlem1  7770  gt0srpr  7776
  Copyright terms: Public domain W3C validator