ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsdm Unicode version

Theorem ecelqsdm 6571
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
Assertion
Ref Expression
ecelqsdm  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  A )

Proof of Theorem ecelqsdm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elqsn0m 6569 . . 3  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  E. x  x  e.  [ B ] R )
2 ecdmn0m 6543 . . 3  |-  ( B  e.  dom  R  <->  E. x  x  e.  [ B ] R )
31, 2sylibr 133 . 2  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  dom  R )
4 simpl 108 . 2  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  dom  R  =  A )
53, 4eleqtrd 2245 1  |-  ( ( dom  R  =  A  /\  [ B ] R  e.  ( A /. R ) )  ->  B  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   dom cdm 4604   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507
This theorem is referenced by:  th3qlem1  6603  nnnq0lem1  7387  prsrlem1  7683  gt0srpr  7689
  Copyright terms: Public domain W3C validator