ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m Unicode version

Theorem ecdmn0m 6687
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Distinct variable groups:    x, R    x, A

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2788 . 2  |-  ( A  e.  dom  R  ->  A  e.  _V )
2 ecexr 6648 . . 3  |-  ( x  e.  [ A ] R  ->  A  e.  _V )
32exlimiv 1622 . 2  |-  ( E. x  x  e.  [ A ] R  ->  A  e.  _V )
4 eldmg 4892 . . 3  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
5 vex 2779 . . . . 5  |-  x  e. 
_V
6 elecg 6683 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x  e.  [ A ] R  <->  A R x ) )
75, 6mpan 424 . . . 4  |-  ( A  e.  _V  ->  (
x  e.  [ A ] R  <->  A R x ) )
87exbidv 1849 . . 3  |-  ( A  e.  _V  ->  ( E. x  x  e.  [ A ] R  <->  E. x  A R x ) )
94, 8bitr4d 191 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R ) )
101, 3, 9pm5.21nii 706 1  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1516    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   dom cdm 4693   [cec 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-ec 6645
This theorem is referenced by:  ereldm  6688  elqsn0m  6713  ecelqsdm  6715  divsfval  13275
  Copyright terms: Public domain W3C validator