ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m Unicode version

Theorem ecdmn0m 6666
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Distinct variable groups:    x, R    x, A

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2783 . 2  |-  ( A  e.  dom  R  ->  A  e.  _V )
2 ecexr 6627 . . 3  |-  ( x  e.  [ A ] R  ->  A  e.  _V )
32exlimiv 1621 . 2  |-  ( E. x  x  e.  [ A ] R  ->  A  e.  _V )
4 eldmg 4874 . . 3  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
5 vex 2775 . . . . 5  |-  x  e. 
_V
6 elecg 6662 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x  e.  [ A ] R  <->  A R x ) )
75, 6mpan 424 . . . 4  |-  ( A  e.  _V  ->  (
x  e.  [ A ] R  <->  A R x ) )
87exbidv 1848 . . 3  |-  ( A  e.  _V  ->  ( E. x  x  e.  [ A ] R  <->  E. x  A R x ) )
94, 8bitr4d 191 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R ) )
101, 3, 9pm5.21nii 706 1  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1515    e. wcel 2176   _Vcvv 2772   class class class wbr 4045   dom cdm 4676   [cec 6620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-ec 6624
This theorem is referenced by:  ereldm  6667  elqsn0m  6692  ecelqsdm  6694  divsfval  13193
  Copyright terms: Public domain W3C validator