Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrn2g | GIF version |
Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
elrn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3759 | . . . 4 ⊢ (𝑦 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐴〉) | |
2 | 1 | eleq1d 2235 | . . 3 ⊢ (𝑦 = 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
3 | 2 | exbidv 1813 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
4 | dfrn3 4793 | . 2 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵} | |
5 | 3, 4 | elab2g 2873 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 〈cop 3579 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: elrng 4795 fvelrn 5616 fo2ndf 6195 |
Copyright terms: Public domain | W3C validator |