| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrn2g | GIF version | ||
| Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.) |
| Ref | Expression |
|---|---|
| elrn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3857 | . . . 4 ⊢ (𝑦 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐴〉) | |
| 2 | 1 | eleq1d 2298 | . . 3 ⊢ (𝑦 = 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
| 3 | 2 | exbidv 1871 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
| 4 | dfrn3 4910 | . 2 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵} | |
| 5 | 3, 4 | elab2g 2950 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 〈cop 3669 ran crn 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: elrng 4912 fvelrn 5765 fo2ndf 6371 |
| Copyright terms: Public domain | W3C validator |