ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn3 Unicode version

Theorem dfrn3 4800
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
Distinct variable group:    x, y, A

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 4799 . 2  |-  ran  A  =  { y  |  E. x  x A y }
2 df-br 3990 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32exbii 1598 . . 3  |-  ( E. x  x A y  <->  E. x <. x ,  y
>.  e.  A )
43abbii 2286 . 2  |-  { y  |  E. x  x A y }  =  { y  |  E. x <. x ,  y
>.  e.  A }
51, 4eqtri 2191 1  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   <.cop 3586   class class class wbr 3989   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  elrn2g  4801  elrn2  4853  imadmrn  4963  imassrn  4964  csbrng  5072
  Copyright terms: Public domain W3C validator