ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn3 Unicode version

Theorem dfrn3 4867
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
Distinct variable group:    x, y, A

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 4866 . 2  |-  ran  A  =  { y  |  E. x  x A y }
2 df-br 4045 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32exbii 1628 . . 3  |-  ( E. x  x A y  <->  E. x <. x ,  y
>.  e.  A )
43abbii 2321 . 2  |-  { y  |  E. x  x A y }  =  { y  |  E. x <. x ,  y
>.  e.  A }
51, 4eqtri 2226 1  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   <.cop 3636   class class class wbr 4044   ran crn 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by:  elrn2g  4868  elrn2  4920  imadmrn  5032  imassrn  5033  csbrng  5144
  Copyright terms: Public domain W3C validator